Abstract:
In an engine load control device of a work vehicle, an output of an engine is transmitted to a hydraulic actuator via a variable displacement type hydraulic pump. A controller is configured to calculate, based on a target rotational speed of the engine detected by a target rotational speed detecting portion and an actual rotational speed of the engine detected by an actual rotational speed detecting portion, a variation rate per unit time of a difference between the detected results, and to adjust the maximum absorbing torque of the hydraulic pump according to the magnitude of the variation rate.
Abstract:
A compressor drive torque estimating device suppresses a discrepancy between an estimated drive torque, which is based on a torque estimating device of a compressor, and an actual drive torque of the compressor. The discrepancy is due to delay in switching between employment of the torque estimating device and the actual drive torque of the compressor in judging the compressor torque. Thus, even in a transitional state immediately after the start of compression, the idling speed of an engine driving the compressor is controlled based on an accurate estimate of the compressor torque, to improve the stability of the engine idle speed.
Abstract:
The present invention provides a hydraulic pump for use in driving a load with a control modulation system which modulates a primary control signal in order to accommodate variations in secondary changeable parameters which require control at a higher frequency or have a lower latency.
Abstract:
A pumping system comprising a motor, wherein the motor has an operating speed, a pump coupled to the motor, wherein the pump has a volumetric displacement, a fluid end coupled to the pump, wherein the fluid end is operable to draw fluid from an input and provide fluid to an output, and a control system operable to regulate the motor and the pump in order to provide fluid to the output at a selected pressure and flow rate within a continuous range of pressures and flow rates between the peak horsepower output and peak torque output of the motor.
Abstract:
A high volume high pressure common rail pump for a fuel system includes pairs of pump head assemblies in phase with each other but oriented in opposition to one another about a rotating cam shaft. Pump pistons in the pump head assemblies simultaneously undergo pumping strokes via a shared two lobe cam of the rotating cam shaft. The pump may include two pairs of pump head assemblies, and each head assembly may include two pump pistons. The cam shaft includes two cams sufficiently out of phase with one another that the cam shaft always has a positive torque even when the cam lobes are symmetrical. In addition, because the pumping is done simultaneously on opposite sides of the cam shaft, the forces on the cam shaft are balanced and its support bearings experience less wear and tear.
Abstract:
A variable capacity compressor like a swash plate type where a pressurized fluid is fed to a control pressure chamber such as a swash plate chamber to apply a backpressure to a piston etc. and the backpressure is changed by the capacity control valve, wherein the valve is streamlined and reduced in cost by providing a simple valve such as a two-way solenoid valve as a capacity control valve in a feed path to or discharge path from the control pressure chamber. By controlling the duty ratio of the valve, it is possible to smoothly change the capacity of the compressor. Further, a torque sensor is provided at a drive shaft, and the valve is controlled by a control unit to change the discharge capacity of the compressor in accordance with that detection value.
Abstract:
Disclosure is made of a method for electronic polar attenuation of torque profile for positive displacement pumps by a processor where the attenuated torque profile is compared with the shaft displacement angle of the pump input shaft. The processor then signals a motor to power a pump with the result of pumping at a constant pressure at the full range of the designed system flow volume. In addition to the attenuated torque profile, the processor can also account for the response time of the pump drive, the motor inductive reactance, system inertia, application characteristics of the pump, and regenerative energy during deceleration of the pump.
Abstract:
A displacement control apparatus controls the displacement of a variable displacement controller. A drive shaft of the compressor is driven by an engine. Torque acting on the drive shaft represents the displacement. The apparatus includes a control valve, an air conditioner controller and a compressor controller. The control valve changes the compressor displacement. The air conditioner controller produces a torque setting signal, which represents a target torque, to the compressor controller. The compressor controller changes the valve opening based on the torque setting signal such that the actual load torque matches the target torque value. Accordingly, the compressor is controlled according to the torque. The air conditioner controller may send the torque setting signal to an engine controller, which eliminates the need for load torque maps.
Abstract:
An automobile air-conditioning apparatus in which the compressor torque of a variable capacity refrigerant compressor is estimated with improved accuracy. The compressor torque is measured on the basis of (1) high-side pressure of the refrigerating circuit directly influencing the compressor torque and (2) a control current value directly controlling the compressor. The accurately estimated compressor torque is then used to stabilize the speed of the vehicle engine driving the compressor.
Abstract:
차체 컨트롤러(70A)는 환경센서(75~83)의 검출신호에 의거하여 토오크보정치를 연산하는 보정제어부(70Ab)를 가지고, 기본제어부(70Aa)로 제어되는 유압펌프의 최대 흡수 토오크를 보정한다. 엔진 컨트롤러(70B)는 환경센서(75~83)의 검출신호에 의거하여 분사보정치를 연산하는 보정제어부(70Bb)를 가지고, 기본제어부(70Ba)로 제어되는 연료분사장치(14)의 연료분사상태를 보정한다. 컨트롤러(70A, 70B)는 다시 연산요소변경부(171, 181)를 가지고, 통신 컨트롤러(70C)는 외부 단말(150)로부터 취득한 변경데이터가 연산요소변경부(171, 181)에 다운로드되어 보정제어부(70Ab, 70Bb)에 포함되는 해당하는 연산요소를 변경한다. 이에 의하여 어떠한 환경에 있어서도 유압펌프의 최대 흡수 토오크 또는 연료분사장치의 연료분사상태의 보정을 적절하게 행하여, 건설기계의 성능을 충분히 발휘시킬 수 있다.