Abstract:
An annular injector is described. The injector includes a first bayonet assembly and a second bayonet assembly each including a terminal end and a tip end. The second bayonet assembly is configured to be concentrically coupled at least partially about the first bayonet assembly. An outer diameter of the first bayonet assembly and an inner diameter of the second bayonet assembly vary at the tip end to define a first substantially annular nozzle. The first bayonet assembly includes a maximum outer diameter that is greater than a minimum inner diameter of the second bayonet assembly and at least a portion of at least one of the first bayonet assembly and the second bayonet assembly extends from the tip end to the terminal end. The injector includes a third bayonet assembly configured to be concentrically coupled at least partially about the second bayonet assembly to define a second substantially annular nozzle.
Abstract:
A burner tip, and method of manufacture, has a support layer with an external surface exposed to combustion reactions and an unexposed internal surface defining at least one a passage therethrough to deliver fuel and combustion gasses, and a thermal protective layer disposed on at least part of the unexposed surface of the burner tip support layer. The thermal protective layer 22 has from about 5% to about 40% of an inorganic adhesive, from about 45% to about 92% of a filler, and from about 1% to about 20% of one or more emissivity agents.
Abstract:
An apparatus is provided for combining oxygen and fuel to produce a mixture to be burned in a burner. The oxygen-fuel mixture is ignited in a fuel-ignition zone in a flame chamber to produce a flame.
Abstract:
An annular injector is described. The injector includes a first bayonet assembly and a second bayonet assembly each including a terminal end and a tip end. The second bayonet assembly is configured to be concentrically coupled at least partially about the first bayonet assembly. An outer diameter of the first bayonet assembly and an inner diameter of the second bayonet assembly vary at the tip end to define a first substantially annular nozzle. The first bayonet assembly includes a maximum outer diameter that is greater than a minimum inner diameter of the second bayonet assembly and at least a portion of at least one of the first bayonet assembly and the second bayonet assembly extends from the tip end to the terminal end. The injector includes a third bayonet assembly configured to be concentrically coupled at least partially about the second bayonet assembly to define a second substantially annular nozzle.
Abstract:
An air nozzle provided on the outer side of a fuel nozzle of a solid fuel burner is divided into a plurality of regions, and has means for regulating air flow rates in nozzles divided in the upper and lower direction. The nozzles (regions) are connected to only the nozzle wall and have obstacles in the circumferential direction, dividing the inside of the nozzle into a plurality of regions, and by changing air flow rates in the respective regions in the outermost peripheral air nozzle, a deviation in momentum is caused in the vertical direction of the burner, a flame forming position is changed, and a combustion gas temperature at the furnace outlet, temperatures of a heat transfer tube installed on the furnace wall surface and a fluid flowing in the heat transfer tube or temperatures of heat transfer tubes provided in the furnace and a flue on the downstream side and temperatures of fluids flowing in the heat transfer tubes are controlled to be constant.
Abstract:
The invention relates to a burner with a burner head and burner tubes (A, I, Z), arranged in the burner head, which are made of metal and are intended for feeding at least one fuel (K) and an oxidizing agent (O) into a reaction space. At least one of the burner tubes (I) is provided with a cladding (V) which is composed of a ceramic material and entirely or partially covers the inner or the outer surface of the burner tube so that hot gas corrosion and mechanical abrasion are avoided. In order to minimize the mechanical loads acting on the cladding, the ceramic cladding (V) is connected to the metallic burner tube (I) by means of a form-fitting connection.
Abstract:
The invention comprises a combination burner for the gasification of pulverized fuels with an oxidation means containing free oxygen at ambient or higher pressures, as well as temperatures between 800-1800° C., with the ignition device of the pilot burner with flame monitoring and the pulverized fuel burner being integrated as a combination burner and all operating channels being routed separately from each other up to the mouth of the burner and the media carried by the channels only being mixed at the mouth of the burner. When the pilot burner is dismantled the eddy bodies 14 attached to its sleeve in the main burner oxidation means supply 17 can be exchanged quickly and easily and thus the main burner flame adapted in the optimum way to the reaction chamber contour of the reactor.
Abstract:
A solid fuel burner using a low oxygen concentration gas as a transporting gas of a low grade solid fuel such as brown coal or the like and a combustion method using the solid fuel burner are provided. The solid fuel burner comprises a means for accelerating ignition of the fuel and a means for preventing slugging caused by combustion ash from occurring. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by that an additional air nozzle 12 and a separator 35 for separating a flow passage are arranged in the fuel nozzle 11, and the exit of the additional air nozzle 12 is set at a position so as to overlap with the separator 35 when seeing from a direction perpendicular to a burner axis, and additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. An amount of air from the additional air nozzle 12 is varied corresponding to a combustion load. By increasing the amount of air from the additional air nozzle 12 at a low load operation, an oxygen concentration of a circulation flow 19 formed in a downstream portion outside the exit of the fuel nozzle 11 is increased to stably burn the fuel. By decreasing the amount of air from the additional air nozzle 12 at a high load operation, a flame is formed at a position distant from the fuel nozzle 11 to suppress radiant heat received by structures of the solid fuel burner and walls of the furnace.
Abstract:
A fuel injector for use in a furnace is provided. The fuel injector is used to deliver pulverized fuel to a combustion chamber of a furnace. The structure of the fuel injector facilitates efficient combustion while stabilizing the combustion flame. As a result, a minimal amount of NOx and other undesirable byproducts are released into the atmosphere.
Abstract translation:提供一种用于炉中的燃料喷射器。 燃料喷射器用于将粉碎的燃料输送到炉的燃烧室。 燃料喷射器的结构有助于有效燃烧,同时稳定燃烧火焰。 结果,最少量的NO x x和其它不期望的副产物被释放到大气中。
Abstract:
A solid fuel burner and method uses a low oxygen concentration gas as a transporting gas for a low grade solid fuel such as brown coal or the like, provides for accelerating ignition of the fuel and for preventing slugging caused by combustion ash. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by an additional air nozzle 12 and a separator 35 for separating a flow passage, arranged in the fuel nozzle 11, and an exit of the additional air nozzle 12 is set at a position that overlaps with the separator 35. Additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. The amount of air from the additional air nozzle 12 is varied corresponding to a combustion load, in order to assure stable burning of the fuel, and, to suppress radiant heat received by structures of the solid fuel burner and walls of the furnace.