Abstract:
A system for forming insulation packages includes a vessel configured to hold a slurry that includes a liquid and an insulation material. A supply conduit is coupled at a first end with the vessel and has a second end configured to couple with an envelope for selectively supplying the slurry from the vessel to an interior cavity of the envelope. A chamber is configured to selectively maintain a pressure within the chamber at a reduced pressure less than ambient pressure. The second end of the supply conduit is disposed within the chamber. A mold includes an inner mold liner that at least partially defines a cavity for retaining the envelope therein and an outer mold shell that at least partially surrounds the inner mold liner. The inner mold liner and the outer mold shell are gas-permeable and permeable to the liquid.
Abstract:
A vacuum heat-insulation material includes: at least one first fiber member; at least one second member that is placed around an outer peripheral part of the at least one first fiber member and that is thinner than an inner part; and at least one shell material that surrounds the at least one first fiber member and the at least one second fiber member.
Abstract:
Disclosed herein are a vacuum insulation panel that improves heat transfer performance while improving durability of a core material and a manufacturing method thereof. The vacuum insulation panel includes a gas-interception sheathing material to cover a core material. The interior of the sheathing material is decompressed so that the sheathing material is hermetically sealed. The core material is formed of a lump of fiber, and the fiber has a hollow part formed therein.
Abstract:
A rectangular double walled cryogenic freezer has a vacuum space filled with alternating layers of flexible insulating material and a reflective material. A support structure is also positioned in the vacuum space. The support structure is open-celled and provides structural support for the freezer walls to prevent wall deformation when a vacuum is drawn. The support structure may be open-cell rigid foam or a support grid sandwiched between two layers of rigid insulation material.
Abstract:
Vacuum heat insulator comprising a laminated core made of a plurality of sheets of inorganic fibers having 10 nullm or smaller in diameter and a certain composition including SiO2 as a main component, Al2O3, CaO, and MgO, a gas barrier enveloping member, and an absorbent. The vacuum heat insulator is characterized by having at least one groove formed therein after fabrication of the vacuum heat insulator. Further, the vacuum heat insulator is characterized by using inorganic fiber core of which a peak of distribution in fiber diameter lies between 1 nullm or smaller and 0.1 nullm or larger, and not containing binding material for binding the fiber material. Electronic apparatuses of the present invention use the vacuum heat insulator. With use of the vacuum heat insulator, electronic and electric apparatuses superior in energy saving and not to present uncomfortable feeling to the user can be provided.
Abstract:
An insulating vacuum panel comprising a microporous, open cell silica foam or a precipitated silica insulating support member enclosed within a sealed, flexible polymeric envelope, the envelope comprising a heat-sealable barrier film comprising a multiple layer laminate containing at least one polyethylene terephthalate layer and at least two barrier layers selected from the group consisting of polyvinylidene chloride, polyvinyl alcohol, polyamide, polyolefin and aluminum foil, or a biaxially oriented liquid crystal barrier film which minimizes permeation of gas and liquid through the barrier film, the panel having an R value per inch of at least about 20 wherein the enclosed insulated vacuum panel is useful as insulation to maintain an essentially constant temperature in a closed structure, a system for storing and transporting temperature-sensitive materials wherein the insulated vacuum panels are employed to provide and maintain a constant temperature in the system, a method for manufacturing the insulating vacuum panel, and a system for storing and transporting temperature-sensitive materials are described.
Abstract:
A portable, self-sustaining refrigeration system for storing and transporting temperature sensitive materials comprising an insulated housing constructed of double wall plastic panels having an R value per inch of at least 20, and a thermal storage phase change material in the form of a reversible gel for operation at about 0.degree. to 10.degree. C. wherein the reversible gel is enclosed in a sealed liquid-impervious enclosure, is disclosed.