Abstract:
Eine Messvorrichtung besteht aus einem optischen Messkopf (H) zur Erfassung des vom Messobjekt ausgehenden zu messenden Lichts, einem optisch mit dem Messkopf verbundenen Spektrometer (S), welches Spektrometer einen fotoelektrischen Wandler (4) aufweist, einem Analog/Digital-Wandler (11) zur Umwandlung der erzeugten analogen elektrischen Signale in entsprechende digitale Messdaten, einem Rechner (10) zur Steuerung des fotoelektrischen Wandlers und des Analog/Digital-Wandlers, einer bi-direktionalen Schnittstelle (5) zur Verbindung des Rechners mit einem externen Rechner (C), wobei Messvorgänge durch den externen Rechner veranlasst und die dabei erzeugten digitalen Messdaten über die Schnittstelle (5) zum externen Rechner übertragen werden können. Die Schnittstelle ist eine USB- oder Fire Wire-Schnittstelle (5) und die Stromversorgung sämtlicher elektrischen Komponenten (2,4,E) der Messvorrichtung erfolgt über die Schnittstelle. Dazu ist eine mit der Schnittstelle verbundenen Stromversorgungsschaltung (100) vorgesehen, welche aus der über die Schnittstelle (5) vom externen Rechner (C) zugeführten Versorgungsspannung die für die einzelnen elektrischen Komponenten (2,4,E) der Messvorrichtung erforderlichen Versorgungsspannungen erzeugt.
Abstract:
The present invention has the object to provide a light detecting system whose performance of division light into spectrum components is precise and trustworthy. A light detecting system, comprising a light source for illuminating an object by white light, a slit (1) through which reflected light generated by illuminating object passes through, a prism (2) for dividing the light passing through the slit into spectrum components, light receive equipment (3) for receiving the spectrum components divided by the prism, a normalizing circuit for normalizing the outputs of a plurality of the light receiving equipment within the predetermined range, and an integrator (6) for integrating the output of the normalizing circuit.
Abstract:
A portable colorimeter for characterizing the optical properties of a colored surface and in particular a colored surface containing metallic or pearlescent particles, which employs three multiangular spectrophotometric measurements to derive color constants for the surface. The colorimeter is a compact integrated unit housing irradiation, detection, control, analysis and display means and employs three illumination angles, preferably -30°, O°, and 65°, and one detection angle, preferably 45°, all measured from the sample normal. The method includes determining the tristimulus values of the color of the sample surface from low resolution spectral reflectance data preferably using twelve detector elements.
Abstract:
L'invention permet de déterminer la couleur à donner en particulier à une prothèse dentaire à partir de la mesure de la couleur des dents adjacentes dans la bouche du patient. Un instrument (44) à fibre optique permet de capter la lumière réfléchie par une dent (50) et de la transmettre à l'entrée d'un spectrocolorimètre (12, 14) associé à un microprocesseur (10), pour déterminer la réflectance spectrale diffuse de la dent et calculer les composantes trichromatiques de ses couleurs apparentes pour divers types d'éclairage. L'invention s'applique notamment à la détermination des couleurs des prothèses dentaires.
Abstract:
An improved color sensor is provided having two sources of illumination, one source being modulated on and off while the other source remains on. Data taken while the modulated source is on is compared with data taken while the modulated source is off to compute the effective fluorescence of the sample. A corrected color spectrum can then be determined for a defined source.
Abstract:
An image processing apparatus, an image reading apparatus, and an image forming apparatus are provided to enable a spectral reflectance estimation function with various characteristics to be determined selectively if the coefficients of predetermined instinct vectors are determined, thereby reducing the amount of data indicating a spectral reflectance. An operating method for an image forming apparatus comprises the following steps of: allowing an image reading unit to radiate a first light source on a photographed object to perform first scanning(S11); allowing a control unit to generate first image data(S12); allowing the image reading unit to radiate a second light source on the photographed object to perform second scanning(S13); allowing the control unit to generate second image data(S14); allowing the image processing unit to calculate a spectral reflectance for each pixel composing image data(S15); allowing the image processing unit to calculate incentive values in an XYZ color chart for each of pixels of the first and second image data(S16); allowing the image processing unit to calculate coefficients for obtaining a spectral reflectance estimation function(S17); allowing the image processing unit to determine the color and amount of toner(S18); allowing the control unit to supply image data to an image forming unit(S19); and allowing the image forming unit to form an image on a recording sheet using plural toners on the basis of the image data(S20).
Abstract:
본 발명은 초음파 처리를 이용한 고추의 색상 분석 방법에 관한 것으로서, 보다 상세하게는 고추에 용매를 가한 후 초음파 처리를 하여 색소를 용출시키는 것을 특징으로 하는 고추의 색상 분석 방법에 관한 것이다. 본 발명의 방법은 종래 방법에 비하여 고추의 색상을 보다 신속하고 정확하게 분석할 수 있다. 따라서, 본 발명의 방법은 고추의 입고/품질 검사에 매우 유용하게 사용될 수 있다.
Abstract:
PURPOSE: A measuring device for a color distribution of an optical fiber is provided to precisely measure the color distribution for the short optical fiber by using an optical fine distance measuring function and a fourie spectroscopy. CONSTITUTION: A beam generated from a light source(110) is divided into first and second optical signals by a first direction binder(115). The first signal is supplied to an optical collimator element(120-1) in a first collimator unit(120), and the second signal penetrates an optical fiber(135). The first signal passes through a scan system for being transferred to an optical fiber polarization adjuster(130) by passing through a first optical fiber collimator element(125-1) in a second optical fiber collimator unit(125). Thus, the optical signals are combined by a third direction binder(140). A first optical detector(145) measures an interference pattern data for transferring to a computer(155) through a low pass filter(150). A second direction binder(175) combines first and second helium-neon optical signals for transferring to a second optical detector(185). Thus, the second optical detector measures an interference pattern data from the helium-neon optical signal. Then, the computer measures the color distribution of the optical fiber by using the interference pattern data.