Abstract:
The present invention provides a sensor having an improved sensitivity and precision, which is lighter and more flexible than conventional sensors, and a method of making the sensor. The present invention relates to a sensor comprising a resin foam containing a magnetic filler, and a magnetic sensor that detects a magnetic change caused by a deformation of the resin foam, wherein the resin foam is a polyurethane resin foam that comprises a polyisocyanate component, an active hydrogen component, a catalyst and a foam stabilizer, and wherein the resin foam has a hardness change (H1-H60) of 0 to 10 between a JIS-C hardness (H1) in one second after contact with a pressure surface of a hardness tester and a JIS-C hardness (H60) in 60 seconds after the contact.
Abstract:
The subject of this patent is a novel method for developing a sensing system that can determine a magnetic attraction force between a magnetic structure and its target level by using an Opposing Residual Magnetic Field (ORMF) to quantify said magnetic attraction force. Steps for the development and implementation of an ORMF Sensing System are set forth herein.
Abstract:
A magnetic load sensor is provided which is high in axial rigidity. The load sensor includes a pair of parallel plate coupled together by coupling pieces. The coupling pieces are inclined relative to the axial direction such that when an axial load is applied to the parallel plates, the parallel plates are displaced relative to each other in a direction perpendicular to the axial direction, due to deflection of the coupling pieces. A magnetic target is mounted to the parallel plate, and a magnetic sensor element is mounted to the parallel plate such that when the parallel plates are displaced relative to each other in the direction perpendicular to the axial direction, the magnetic target and the magnetic sensor element are displaced relative to each other in the direction perpendicular to the axial direction.
Abstract:
A system and method for creating one or more magnetically conditioned regions on a rotatable shaft or disk-shaped torque sensing element, wherein rotation noise produced by the element due to magnetic field variations is substantially negated, and a system and method for creating one or more magnetically conditioned regions on a rotatable shaft or disk-shaped element to allow the element to function as part of a rotational speed or rotational position sensing device.
Abstract:
A magnetoelastic sensor. The magnetoelastic sensor uses strain-induced magnetic anisotropy to measure the tension or compression present in a plate. During construction, an annular region of the plate is magnetized with a circumferential magnetization. Magnetic field sensors are placed near this magnetized band at locations where the magnetization direction is non-parallel and non-perpendicular to the axis of tension. The strain-induced magnetic anisotropy caused by tension or compression then produces a shift in the magnetization direction in the plate regions near the field sensors, thereby causing magnetic field changes which are detected by the magnetic field sensors. The magnetic field sensors are connected to an electronic circuit which outputs a voltage signal which indicates the tension or compression in the plate.
Abstract:
A load sensor unit is provided which is less likely to suffer from hysteresis errors. The magnetic load sensor unit includes a flange member, a support member supporting the flange member from the axially rearward side, a magnetic target fixed to the flange member, a magnetic sensor fixed to the support member. The magnitude of the load is detected based on the magnetic flux detected by the magnetic sensor. A load acting surface of the flange member to which the load is applied is formed at a position offset axially rearwardly relative to an axially forward surface of the flange member.
Abstract:
A magnetic load sensor unit is provided which can detect a load with a minute movement of its part, and which is durable and less likely to be influenced by temperature. The sensor unit includes a flange member (1) deflectable when an axial load is applied, a support member (2) supporting the flange member (1), a magnetic target (3) which generates a magnetic field, and a magnetic sensor (4) for detecting the magnetic field generated by the magnetic target (3). The magnetic target (3) and the magnetic sensor (4) are fixed to the flange member (1) and the support member (2), respectively, such that when the flange member (1) is deflected, the magnetic target (3) and the magnetic sensor (4) move relative to each other, whereby magnitude of the load can be detected based on the magnetic field detected by the magnetic sensor (4).
Abstract:
A method and measurement arrangement are disclosed for measuring mechanical stress in ferromagnetic workpieces, in which a ferromagnetic workpiece impresses a magnetic field and a magnetic field value is measured and analyzed with respect to the mechanical stress. The method includes at least two exciters of the magnetic field arranged along a longitudinal extension of the workpiece such that a section of the workpiece is located between the two exciters of the magnetic field. A direction-dependent magnetic field sensor is arranged at a position along the longitudinal extension of the workpiece, which can be at half the distance between the two exciters of the magnetic field. With the direction-dependent magnetic field sensor, the change in position and/or the direction of a dividing line between the north and south poles of the impressed magnetic field is determined and analyzed.
Abstract:
A detection method for at least one of acting forces on tire among a back-and-forth directional force, a lateral force, vertical force, and a moment about a tire axis, detects the forces by strain outputs of strain sensors, which are attached on the tire and measure the strains of a sidewall portion. The method includes a strain measuring step to measure the strain of the sidewall portion with each of the above-mentioned strain sensors simultaneously at the rotational position P based on the tire rotational standard position X and to obtain the strain output per each strain sensor, and an acting force calculating step to calculate the above-mentioned force acting on the tire based on the strain output per strain sensor obtained on this strain measuring step.
Abstract:
The invention relates to a load gauge comprising a generator-sensor assembly. Said assembly comprises a generator unit that generates a magnetic field and a sensor unit that is sensitive to magnetic fields, said generator unit and sensor unit being displaceable by a force in relation to one another. According to the invention, the generator unit comprises at least one permanent magnet and a second permanent magnet, each with a geometric cross-section that remains essentially constant in a longitudinal direction. The first permanent magnet and the second permanent magnet are situated at an angle to one another.