Abstract:
An apparatus includes a low-coherent light source configured to emit an electromagnetic wave; a spatial light modulator configured to modulate a wavefront of the electromagnetic wave; an interferometer including a movable mirror to set a depth of a medium to be irradiated by the electromagnetic wave and a beam splitter configured to the electromagnetic wave into a reference beam and an object beam; a detector to detect information about an interference pattern formed by the object beam coming from the medium via the beam splitter and the reference beam reflected by the movable mirror; and a controller configured to control the spatial light modulator, based on the information, to form a modulated wavefront for irradiating the medium.
Abstract:
An imaging or sensor system comprises a transmitter assembly, a receiver assembly and a control unit. The transmitter assembly defines an outgoing optical beam transmission path with respect to a target surface and the receiver assembly defines a return optical signal transmission path from the target surface. Each of the paths includes transmission through or reflection from at least one microdisplay device comprising a plurality of controllable elements for selective placement in a transmit mode for transmission of light along the transmission paths. A control unit selectively places the microdisplay device elements in the transmission mode.
Abstract:
An optical platform and system for the simultaneous stimulation, manipulation and probing of multiple living cells in complex biological systems. The apparatus utilizes a spatiotemporal light modulator to expose a sample to pinpoints of light at selected times and wavelengths in two or three dimensional space and then detect the responses. In one embodiment, a spatiotemporal light modulator is optically coupled to a variable wavelength light source, a lens system and a system control unit with sample response sensors, wherein sample responses are detected after exposure to patterns of light in real time. Light patterns can be modulated in response to sample responses.
Abstract:
Method of fluorescence imaging including: illuminating a sample to excite its fluorescence and acquiring an image thereof; based on fluorescence spectral and spatial information from the sample's fluorescence image, segmenting the image into regions of similar spectral properties; for each image segment, exciting the fluorescence of the corresponding sample region, and detecting the corresponding fluorescence; based on modelling, determining expected fluorescence parameters from the fluorescence signals detected for each region; scanning the sample and determining final fluorescence parameters based on said expected fluorescence parameters.
Abstract:
The present invention relates to novel systems, devices, and methods comprising spatial light modulators for use in the reading and synthesis of microarrays. For example, the present invention provides micromirror systems for synthesizing and acquiring data from nucleic acid microarrays and systems for collecting, processing, and analyzing data obtained from a microarray.
Abstract:
The present invention relates to a confocal microscope and the measuring methods of fluorescence and the polarized light using the same, and said confocal microscope is provided with the inlet optical part (10, 10′) to let the polarized light from an illuminating light source (11) onto an object to be observed (2) via a matrix type liquid crystal device (22) provided with a microlens array (21) on its top part, and an objective lens (23), the light detecting part (30, 30′) to detect the reflected or the fluorescent light from the object to be observed, and the liquid crystal control subpart (52) to control a liquid crystal device (22), and it transmits the light passing through said microlens array (21) from each microlens to each pixel (22a) of the liquid crystal device (22), and makes a plurality of foci (24) on the object to be observed (2) by the objective lens (23), as well as controls polarization directions of the lights transmitted through each pixel of the liquid crystal device (22) using the liquid crystal control subpart (52) so that they are made mutually orthogonal.
Abstract:
Certain disclosed embodiments concern an integrated imaging system that combined light-sheet microscopy, which enables considerable speed and phototoxicity gains, with quantitative-phase imaging. A method for using such imaging systems also is disclosed. In an exemplary embodiment, an integrated imaging system was used for multivariate investigation of live-cells in microfluidics.
Abstract:
Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.
Abstract:
A system, including a structured illumination stage to provide a spatially modulated imaging field is provided. The system further includes a spatial frequency modulation stage to adjust the frequency of the spatially modulated imaging field, a sample interface stage to direct the spatially modulated imaging field to a sample, and a sensor configured to receive a plurality of fluorescence emission signals from the sample. The system also includes a processor configured to reduce a sample scattering signal and to provide a fluorescence emission signal from a portion of the sample including the spatially modulated imaging field. A method for using the above system to form an image of the sample is also provided.
Abstract:
Systems and methods are disclosed to enhance three-dimensional photoacoustic imaging behind, through, or inside a scattering material. Some embodiments can increase the optical fluence in an ultrasound transducer focus and/or enhance the optical intensity using wavefront shaping before the scatterer. The photoacoustic signal induced by an object placed behind the scattering medium can serve as feedback to optimize the wavefront, enabling one order of magnitude enhancement of the photoacoustic amplitude. Using the enhanced optical intensity, the object can be scanned in two dimensions and/or a spot can be scanned by re-optimizing the wavefront before post-processing of the data to reconstruct the image. The temporal photoacoustic signal provides information to reconstruct the third-dimensional information.