Abstract:
An image wavelength conversion device for converting an infrared light image into a visible light, a method of manufacturing the device, and an image conversion system using the device are provided. The image wavelength conversion device is formed by an optical waveguide array 3 in which one end and the other end of each of a multitude of quasi-phase-matching sum frequency generating optical waveguides are aligned in a two-dimensional plane. One plane of the optical waveguide array 3 forms an incident plane which includes respective waveguides as elements thereof, and the other plane of the optical waveguide array 3 forms an exit plane which includes waveguides corresponding to the waveguides of the incident plane as elements thereof. From an incident light (λ1) and an excitation light (λ2) incident to an arbitrary element of the incident plane, an output light (λ3) having the relationship of (λ1)−1+(λ2)−1=(λ3)−1 is generated in the corresponding waveguide element. λ1, λ2, and λ3 here represent the wavelength of the incident light, the wavelength of the excitation light, and the wavelength of the output light, respectively.
Abstract:
When a wavelength of a first laser beam with which a first recording medium including a first recording layer is recorded and reproduced is indicated as λ1 (nm), a wavelength of a second laser beam with which a second recording medium including a second recording layer is recorded and reproduced as λ2 (nm), the relationship between the wavelength λ1 and the wavelength λ2 is set to be expressed by 10≦|λ1−λ2|≦120. The first recording layer has a light absorptance ratio of at least 1.0 with respect to the wavelength λ1. The light transmittance of the first recording medium with respect to the wavelength λ2 is set to be at least 30 in both the cases where the recording layer is in a crystal state and in an amorphous state. In order to record and reproduce the optical multilayer disk with the above-mentioned characteristics, a multiwavelength light source with the following configuration is used. Wavelengths of fundamental waves with different wavelengths from injection parts formed at one end of a plurality of optical waveguides, which satisfy phase matching conditions different from one another and are formed in the vicinity of the surface of a substrate, are converted simultaneously, and the first and second laser beams are emitted from emission parts formed at substantially the same position at the other end of the optical waveguides. This enables an optimum optical system for high density recording and reproduction to be obtained.
Abstract:
Disclosed herein is a tunable wavelength optical transmission module, the wavelength of which can be tuned over the wide wavelength region of a C band and which can be implemented at a low price and, thus, can be applied to an optical network terminal. Bragg gratings having different grating periods are arranged in parallel or series and the temperatures of Bragg grating regions are then controlled, so that the wavelength of an optical signal can be tuned over a wide wavelength range through the small variation in temperature.
Abstract:
An optical digital-to-analog conversion is realized by employing either a continuous wave or pulsed laser optical signal. The laser optical signal is split into a plurality of mutually coherent optical beams, which are phase shift modulated by bits of a digital data sequence to be converted to an analog signal. The phase shift modulated optical beams are recombined to realize the desired digital-to-analog converted optical signal.
Abstract:
A novel and efficient system and method for providing an output beam of collimated energy in the 8-12 micron range. The solid state system includes a pump laser (210) for providing an input beam and an OPO (250) using an x-cut potassium titanyl arsenate crystal for shifting the input beam from the first wavelength to a second wavelength. A second optical parametric oscillator (271) is included for shifting the beam from a second wavelength to a third wavelength. The second optical parametric oscillator (271) uses a cadmium selenide crystal. A tuning mechanism with an associated controller is provided to tune the oscillator as needed for a particular application.
Abstract:
A planar lightguide circuit with the optical intensity modulator array structure capable of generating less influence upon the adjacent channels, by inserting a block optical waveguide between optical channels formed in a planar lightguide circuit chip having the optical intensity modulator array. The circuit is provided with a plurality of channel arrays each including an input waveguide, a waveguide modulation region connected to the input waveguide, for modulating an input light wave, an output waveguide connected to the waveguide modulation region, for outputting the modulated light wave, and a modulating unit for modulating the light wave that is disposed in the vicinity of the waveguide modulation region. The circuit chip further includes at least one first channel having a first optical intensity modulator provided with said modulating means, at least one second channel having a second optical intensity modulator provided with the modulating unit, and at least one block waveguide arranged between the first and second channels, for blocking the mutual interference between the light waves in the adjacent channels.
Abstract:
An optical modulation system for externally modulating two independent optical signals with first, second, third and fourth electrical input signals with two modulators. The system includes a first modulator with a first electrode receiving the first electrical input signal, a second electrode receiving the second electrical input signal, a first optical signal path co-propagating the first optical input signal with the first electrical signal and counter-propagating the second optical input signal to generate a first modulated optical signal, and a second optical signal path co-propagating the second optical input signal with the second electrical input signal and counter-propagating the first optical input signal to generate a second modulated optical signal. The second modulator includes a third electrode receiving the third electrical input signal, a fourth electrode receiving the fourth electrical input signal, a third optical signal path co-propagating the first optical input signal with the third electrical input signal and counter-propagating the second optical input signal to generate a third modulated optical signal, and a fourth optical signal path co-propagating the second optical input signal with the fourth electrical input signal and counter-propagating the first optical input signal to generate a fourth modulated optical signal.