Abstract:
An optical reading head is an optical reader for photoelectric reading of images on a medium, comprising a plural light-emitting optical fibers for transmitting beams of light from light emitting elements to the surface of the medium, and plural light-receiving optical fibers for transmitting beams of reflected light from the medium surface to light-sensitive elements. The ends of the light-emitting and light-receiving optical fibers opposite to the medium surface are positioned in first and second rows, respectively, at a predetermined pitch. The ends of the light-receiving optical fibers are displaced relative to the ends of the light-emitting optical fibers along the first and second rows by a distance equal to a half of the predetermined pitch. Also disclosed is an optical reader comprising the above-described optical reading head, and a control device for controlling the operations of the light emitting elements, so that the resolution of the reading head is variable in two steps.
Abstract:
An image sensor has a frame, a transparent cover which is mounted on the top of the frame and on which an original document is to be placed, and a base plate disposed within the frame. On the base plate, there are mounted a light emitting section, a lens for condensing the reflective light and a light receiving section. The base plate is disposed within the frame so that the light emitting section is located directly below the transparent cover and the optical axis of the condensing lens is inclined relative to the plane of the transparent cover. Light rays emitted from the light emitting section enter the transparent cover in a direction substantially perpendicular to the plane thereof and are reflected by the transparent cover slantingly toward the light receiving section. By arranging the condensing lens inclined relative to the plane of the transparent cover, the vertical distance between the light receiving section and the transparent cover can be reduced. The entire configuration of the frame is tapered toward the transparent cover on the top thereof. Thus, the image sensor can be more easily assembled into any electronic instrument. The light emitting section is enclosed by walls which are increased in reflectivity, resulting in an increase of the amount of irradiating light. The condensing lens can be mounted and held in a recess formed in the top of the frame without the need for any adhesive.
Abstract:
An image sensor has a frame, a transparent cover which is mounted on the top of the frame and on which an original document is to be placed, and a base plate disposed within the frame. On the base plate, there are mounted a light emitting section, a lens for condensing the reflective light and a light receiving section. The base plate is disposed within the frame so that the light emitting section is located directly below the transparent cover and the optical axis of the condensing lens is inclined relative to the plane of the transparent cover. Light rays emitted from the light emitting section enter the transparent cover in a direction substantially perpendicular to the plane thereof and are reflected by the transparent cover slantingly toward the light receiving section. By arranging the condensing lens inclined relative to the plane of the transparent cover, the vertical distance between the light receiving section and the transparent cover can be reduced. The entire configuration of the frame is tapered toward the transparent cover on the top thereof. Thus, the image sensor can be more easily assembled into any electronic instrument. The light emitting section is enclosed by walls which are increased in reflectivity, resulting in an increase of the amount of irradiating light. The condensing lens can be mounted and held in a recess formed in the top of the frame without the need for any adhesive.
Abstract:
Process and apparatus for fabricating an extended scanning or printing array in which several smaller scanning or printing chips (5) are bonded end-to-end onto the surface of a glass substrate (10) having an opaque thermally and/or electrically conductive coating (19) thereon, with the coating removed at discrete sites (24) to allow a photocurable adhesive (30) placed at the sites to be cured through exposure to UV light from underneath the substrate, the photocurable adhesive holding the chips in place while a chip-bonding adhesive (38) deposited on the conductive coating where the chips are located is cured to provide a permanent structure.
Abstract:
Zur Abbildung eines Objekts wird dieses durch einen in einer ersten Koordinatenrichtung (x) wandernden, spaltförmigen Lichtfleck abgetastet. Das vom Objekt gestreute oder transmittierte Licht wird einem zeilenförmigen Detektor (107) zugeführt, dessen sequentiell abgefragten Einzelelemente die Auflösung des Objekts in der zweiten Koordinatenrichtung (y) bewirken. Die Abtastung des Objekts (115) erfolgt über eine erste Lage (104) nebeneinanderliegender lichtleitender Fasern (105), die direkt auf das Objekt (115) aufgelegt sind. Eine zweite, die erste Lage (104) überkreuzende Faserlage (102) dient zur Weiterleitung des Streulichts zu dem Detektor (107). Im Kreuzungsbereich der Faserlagen (102, 104) sind die Kerne (106) der Fasern (105) objektseitig freigelegt und mit Beugungsgittern (112, 112) zur Ein- bzw. Auskopplung des Lichts in bzw. aus den Faserkernen belegt.
Abstract:
There is provided a method of manufacturing an image sensor unit, the image sensor unit including: a linear light source that illuminates a document along a main scanning direction; a rod lens array that includes a plurality of rod lenses arranged in the main scanning direction and condenses a light reflected from the document; and a linear image sensor that receives a light condensed by the rod lens array. When a rod lens having an optically discontinuous portion on a surface and/or interior of the rod lens is included, the rod lens array is arranged such that the optically discontinuous portion is not located toward the document.
Abstract:
An image reading apparatus includes a main unit, an openable unit, a cable connected to the openable unit and routed in the main unit, and a holding member attached to the main unit. The holding member includes a first guide portion configured to hold a first specified portion of the cable. The holding member, with the first guide portion holding the first specified portion of the cable, is configured to move from a first position to a second position. When the holding member is in the first position, the cable has no slack in a second specified portion of the cable, the second specified portion being closer to an end of the cable disposed in the openable unit than the first specified portion. When the holding member is in the second position, the cable has slack in a second specified portion of the cable routed in the main unit.
Abstract:
An imaging optical system includes a plurality of lens optical system rows each including a plurality of lens optical systems arranged in a first direction. The plurality of lens optical system rows is arranged in a second direction perpendicular to the first direction and to an optical axis direction. Each of the plurality of lens optical systems in each of the plurality of lens optical system rows is configured to form an erect equal-magnification image in a cross section perpendicular to the second direction and configured to form an inverted image in across section perpendicular to the first direction. Ina cross section perpendicular to the optical axis direction, optical axes of the respective plurality of lens optical systems in adjoining ones of the plurality of lens optical system rows are separate from one another in the first direction and are located on the a line.
Abstract:
A light collecting member includes a lens to make incident light be collected on a light receiving member, a lens barrel to house the lens, an end portion into which a light enters of the lens barrel being arranged near the light receiving member and a fence member to cover the end portion into which a light enters of the lens barrel and the light receiving member, the fence member having an exhaust port formed in a manner extending in a vertical direction.