Abstract:
In one example, a document scanner has a fixed-position scan bar and a built-in translatable calibration target. The scan bar has a linear array of imaging elements aimed in an imaging direction. The calibration target is spaced apart from and parallel to the linear array, and has a planar surface orthogonal to the imaging direction spanning the length of the linear array. The target is translatable during a calibration in a direction in a plane of the surface.
Abstract:
An image forming apparatus for forming images to a medium, includes an apparatus housing; a temperature detection unit for detecting a temperature of a surrounding of the apparatus housing; a dehumidifying unit for dehumidifying an interior surrounded by the apparatus housing; and a dehumidifying decision unit for operating the dehumidifying unit based on a change of the detected temperature at the temperature detection unit, to certainly remove dew condensation
Abstract:
An image reading apparatus including: a supply device for supplying sheets to a reading position, a platen glass plate in the reading position, a platen roller opposed to the platen glass plate, a reading device for exposing a sheet on the platen glass plate to read an image on the sheet, and a white guide member upstream of the platen roller in the transporting direction, wherein a portion of the guide member closest to the platen roller is on the platen roller side with respect to a plane which includes the point in the outer periphery of the platen roller closest to the platen glass plate and which is parallel to the platen glass plate, and wherein the longitudinal length of the guide member is the same as or larger than the width of the range of the reading device.
Abstract:
A dust protection device for an image sensor includes a housing in which the image sensor is mounted. The housing includes an aperture for allowing reflected light from the object being viewed to enter the housing and impinge upon the image sensor. A transparent film is mounted across the aperture for preventing dust from entering the housing. The transparent film is selectively movable for providing a continuous clean surface across the aperture.
Abstract:
A contact-type linear image sensor has two separate substrates (l2, l4) aligned adjacent to each other A linear array (D) of amorphous silicon photoelectric converting elements serving as photoelectric cells and a matrix wiring unit (28) are provided on a first substrate (l2) Driver IC chips (34, 36) are mounted on a second substrate (l4) Connection pad patterns (20a) for common cell electrodes (20) of cell groups (Dl, D2,..., Dm) and connection pad patterns (32a, 32b, 32c, 32d) for row signal lines (26) of the matrix wiring unit (28) are provided concentrically at a peripheral edge of the first substrate (l2) to be alinged along a junction edge line defined between the substrates (l2, l4). Connection pad patterns (38) for the IC chips (34, 36) are linearly aligned at a peripheral edge of the second substrate (l4) and along the substrate junction edge line to oppose the pad patterns (20a, 32a, 32b, 32c, 32d) of the first substrate (l2). A connector unit for electrically connecting the pad patterns of the first and second substrates (l2, l4) may be provided at only one position of the junction edge portion of the first and second substrates (l2, l4).
Abstract:
A configuration is adopted in which an image sensor unit includes: a sensor substrate on which a plurality of photoelectric conversion elements are mounted; a light source that includes light-emitting elements and is for illuminating a document; a light guide that guides light from the light source from one end face in a longitudinal direction and linearly illuminates the document; a rod lens array imaging reflected light from the document on the sensor substrate; and a frame attaching each of these, and in which the frame detachably includes a spacer provided in proximity to the light source, and the spacer includes a light shield roof elongated so as to cover the light source and the end of the light guide.
Abstract:
An image reading apparatus, including: an image reading unit configured to read an image of a document placed on a document placing portion; a document pressure unit configured to press the document placed on the document placing portion against the document placing portion; a first holding unit configured to hold the document pressure unit so that the document pressure unit is openable and closable with respect to the document placing portion with a shaft pivotally supporting the document pressure unit; and a second holding unit configured to hold the document pressure unit so that the document pressure unit is openable and closable with respect to the document placing portion without a shaft pivotally supporting the document pressure unit.
Abstract:
The reading device includes an image reading unit, a document feeder unit, a table document detection unit for detecting presence or absence of a document on the place-reading contact glass, a document set sensor for detecting setting of the document, a size detection unit for detecting a size of the document on the document tray, and an open/close detection unit for detecting open and close of the document feeder unit. In a determination necessary state in which setting of the document is not detected while an object on the document tray is detected, it is determined to execute feed reading, or to execute place reading, or to be disabled to confirm to execute the place reading or the feed reading, based on whether or not there is a document on the place-reading contact glass and based on history information.
Abstract:
A detecting device having image capturing capability in a bridge structure is provided, which includes a housing, a bridge structure, a scanning module, and a slider. The housing has a plurality of inner walls. The bridge structure includes at least one roller, an ADF transparent layer, and a flatbed transparent layer. The roller is arranged on one of the inner walls between the ADF transparent layer, and the flatbed transparent layer. The scanning module is movably arranged below the ADF transparent layer, and the flatbed transparent layer. The scanning module and the roller are spaced apart from each other. The slider is arranged on the scanning module, where the slider has a glide plane arranged proximate to the ADF transparent layer, and the flatbed transparent layer. The roller rolls on the glide plane. Thus, the lifespan of the device may be extended through reduction of friction during scanning operation.