Abstract:
An optical writing device that writes electrostatic latent images on an image carrier by irradiating and scanning the image carrier with an optical beam includes an optical element, a support housing configured to support members constituting the optical writing device, a pair of optical-element holding members opposing each other in a principal scanning direction and arranged in the support housing, and a displacing member configured to displace at least one of the pair of optical-element holding members relatively to the support housing on a plane perpendicular to the principal scanning direction. The optical-element holding member is made of a material having a coefficient of linear expansion smaller than that of the support housing.
Abstract:
A document reading apparatus including: a first scanning section that moves in a scanning direction along a document surface, for supporting a first mirror to reflect an image of a document in a direction parallel to the scanning direction; an intermediate scanning section that moves synchronous with the first scanning section, for supporting an intermediate mirror to reflect the image of the document reflected by the first mirror in a direction opposite from an incident direction of the image; a reading section including an imaging sensor for reading the image of a scanned document and a focusing lens for focusing the image of the document reflected by the intermediate mirror on the imaging sensor; a driving wire for pulling the first scanning section in the scanning direction; a supporting pulley for supporting the driving wire at a starting side for scanning or at an ending side for scanning; a position adjustment section capable of adjusting a position of the supporting pulley in its axial direction; a control section for performing such control that the image for adjustment is read by the reading section when the first scanning section is located at a first position and at a second position in the scanning direction, and an adjustment amount of the position adjustment section is calculated based on a readout result of the image; and an output section for outputting the calculated adjustment amount.
Abstract:
In a method for initializing an image scanner having a scanning module and an automatic document feed (ADF) glass, the scanning module is moved in a forward direction toward the ADF glass to search for a reference mark located within a relatively close proximity to the ADF glass. The scanning module is moved forward to search for a black-white transition in response to the reference mark being located and the scanning module is moved in a backward direction away from the ADF glass in response to the black-white transition being located. The scanning module is stopped when the image sensor of the scanning module is aligned with an origin mark to thereby accurately position the scanning module.
Abstract:
An image reading apparatus includes a reading unit, a control unit, and a pattern region. The reading unit moves a linear reading range, which is provided in a main scanning direction, in a sub-scanning direction that intersects with the main scanning direction while reading an object that faces the reading range, and generates image data on the basis of a read result. The control unit controls the reading unit. The pattern region includes a predetermined pattern that defines a reference position for specifying a reading position that is read by the reading unit. The predetermined pattern has a characteristic portion that specifies a schematic position of the predetermined pattern in the sub-scanning direction. The control unit includes a first image acquisition unit, a pattern searching unit, a second image acquisition unit, a characteristic portion searching unit, a first reprocessing instruction unit, and a second reprocessing instruction unit.
Abstract:
Provided is an image reader including: a transparent original mounting plate on which an original is mounted; a support which has an appearance larger than that of the original mounting plate and supports the original mounting plate; a reading unit which optically reads the original placed on the original mounting plate; a movement unit which moves the reading unit in a predetermined direction within a readable area; and a reference location specifying plate having a positioning hole and a reference mark hole, wherein the support has a positioning protrusion within the readable area, the reference location specifying plate is positioned and fixed with respect to the support by inserting the positioning protrusion into the positioning hole, and the reading unit optically detects the location of the reference mark hole and specifies a reference location of an original reading area from the detected location of the reference mark hole.
Abstract:
A scanner capable of selecting scanning positions includes a scanning window, a scanning module and a control processing unit. Before a sheet of documents is scanned, the control processing unit moves the scanning module to a first location to generate a first image datum, and moves the scanning module to a second location to generate a second image datum. The control processing unit compares both the image data according to differences between the first and second image data, and moves the scanning module to a scanning location for scanning the sheet of document.
Abstract:
A document reading apparatus including: a first scanning section that moves in a scanning direction along a document surface, for supporting a first mirror to reflect an image of a document in a direction parallel to the scanning direction; an intermediate scanning section that moves synchronous with the first scanning section, for supporting an intermediate mirror to reflect the image of the document reflected by the first mirror in a direction opposite from an incident direction of the image; a reading section including an imaging sensor for reading the image of a scanned document and a focusing lens for focusing the image of the document reflected by the intermediate mirror on the imaging sensor; a driving wire for pulling the first scanning section in the scanning direction; a supporting pulley for supporting the driving wire at a starting side for scanning or at an ending side for scanning; a position adjustment section capable of adjusting a position of the supporting pulley in its axial direction; a control section for performing such control that the image for adjustment is read by the reading section when the first scanning section is located at a first position and at a second position in the scanning direction, and an adjustment amount of the position adjustment section is calculated based on a readout result of the image; and an output section for outputting the calculated adjustment amount.
Abstract:
The present invention discloses an automatic linear-motion and tilt-angle control apparatus for an image-capture device inside a photography light box, which includes: a photography light box, a linear-motion module, a rotation module, and a fixing seat. The linear-motion module further includes: servo motors, ball screws, linear sliding rails and a sliding table to implement the horizontal and vertical motions of an image-capture device inside the photography light box. The rotation module includes: stepping motors, worm gears, and worm wheels to rotate the image-capture device when the linear-motion module moves the image-capture device horizontally, and tilts the image-capture device when the linear-motion module moves the image-capture device vertically to an appropriate height so that the image-capture device can be aimed at the object. The fixing seat is used to fix the image-capture device and disposed on a rotation table in an emptied hole.
Abstract:
The present invention provides a sensor alignment method using in a scanning apparatus. Firstly, providing a housing on the transparent board and defining a alignment area below the housing, the sensor locates under the alignment area and the light source locates aside the alignment area; then, moving the sensor out of underside of the alignment area and measuring intensity of light source to obtain a regional position where the brightest position on the transparent board, and moving the sensor to underside of the regional position; and finally, moving the sensor and the light source into the alignment area, and synchronously moving the sensor and the light source out to capture images. This invention prevents the tolerance formed in the printing process and the alignment point determination of the sensor is more precise, and furthermore, the scanning area is increased and the manufacturing cost is reduced.
Abstract:
A method and mechanism to set a platen glass of an image reader by demounting the platen glass after the platen glass has previously been position-adjusted and positioning means have been fixed to this adjusted position and then achieving the desired positioning by these positioning means before the platen glass is mounted again on the image reader. Upon completion of optical adjustment, the platen glass is temporarily fixed to a casing of the image reader and then the platen glass is position-adjusted until image data formed on a test chart sheet coincide with predetermined image data. After the adjustment, positioning blocks are secured to top-plates of the casing and a glass retaining plate is secured to these top-plates. Subsequently, the platen glass may be mounted on the image reader in operative association with these positioning blocks to set the platen glass to the adjusted position.