Abstract:
The present disclosure relates to a jack assembly including a jack mount having a front side and a rear side. A jack of the assembly is adapted to be slidably mounted in a jack receiving region of the jack mount. The jack assembly also includes a plurality of cross-connect contacts, and a rear interface assembly. The rear interface assembly includes a dielectric cover piece and a plurality of rear connectors that project outward from the dielectric cover piece.
Abstract:
A connection module that mounts to a frame includes a housing and electrical contacts positioned on different ends of the housing. A first fixing member defines a channel sized to receive at least a portion of a frame. A second fixing member is moveable relative to the first fixing member to extend at least partially across the channel of the first fixing member.
Abstract:
The present disclosure relates to a jack assembly including a jack mount having a front side and a rear side. A jack of the assembly is adapted to be slidably mounted in a jack receiving region of the jack mount. The jack assembly also includes a plurality of cross-connect contacts, and a rear interface assembly. The rear interface assembly includes a dielectric cover piece and a plurality of rear connectors that project outward from the dielectric cover piece.
Abstract:
A connecting module includes a housing, electric contacts for connecting wires and/or cables, and at least one fastening element that allows the connecting module to be fixed to an assembly frame. The fastening element is embodied at least in two parts, encompassing a first fastening piece and a second fastening piece. The connecting module can be put on the assembly frame by means of the first fastening piece and can be locked on the assembly frame with the aid of the second fastening piece.
Abstract:
A cross-connect module is disclosed herein. The cross-connect module includes a housing having a front end and a rear end. The rear end includes a rear wall defining connector mounting openings. First and second switching jacks are positioned adjacent the front end of the housing. Rear connectors mount within the connector mounting openings. Cables electrically couple the rear connectors to the switching jacks. A tracer lamp circuit including a power connector and a pin jack are also provided. In depicted embodiments, the rear connectors, the pin jack and the power connector are secured to the rear wall of the housing by snap-fit connections. The depicted module also includes a front cover having structure for providing snap-fit connections with the switching devices.
Abstract:
A center conductor for use in a coax jack module assembly, for example. The center conductor including a conductive body having a crimped region and an uninterrupted region. The crimped region being located only within one of a first half and a second half of the conductive body. The first half and the second half of the conductive body being defined by a plane, which is defined by a central axis of the conductive body. The crimped region is defined by slots, such as saw cuts, made at an angle parallel to the plane.
Abstract:
A coaxial connection assembly including a coaxial jack. The jack is positioned within a longitudinal opening of a housing. The first end of the jack extends through a first end of the housing and the second end of the jack extends through a second end of the housing. The jack may only be inserted within and removed from the housing through the first end and may be held within the opening by a catch. Rotation of the jack within the opening is prevented. The housing includes a mounting flange extending away from the longitudinal opening. The flange may be adjacent the first end of the housing, and may include an opening for receiving a fastener. Sidewalls may extend from the flange toward the second end.
Abstract:
The invention relates to a distributor device for use in communication and data systems technology, comprising at least one distributor connection module. Said distributor connection module comprises a housing which houses input and output contacts, accessible from the exterior, for connecting lines, cables or wires. The distributor device comprises at least one additional connection module which comprises at least one SDH/SONET transport interface and outputs for electrical signals. The outputs of the connection module are connected to inputs of the distributor connection module. The connection module comprises at least one converter for converting SDH/SONET transport signals to E1 signals and vice versa. The invention also relates to a corresponding connection module and a corresponding distributor connection module.
Abstract:
A coaxial switching jack with a pair of coaxial assemblies mounted within a housing having a pair of front openings. The coaxial assemblies each include a center conductor and a shell conductor. The center conductors are connected by a first spring and the shell conductors are connected by a second spring. Insertion of a coaxial cable connector within one of the front openings deflects the springs from the corresponding coaxial assembly and disconnects the center and shell conductors of the two assemblies. The jack may also be configured to provide an electrical connection between the center and shell conductors of the second coaxial assembly if a coaxial cable connector is inserted within the first coaxial assembly. The connection between the center and shell conductors of the second coaxial assembly may allow for selection of a desired electrical impedance.
Abstract:
A network interface device (NID) for a fiber optic communications network is provided for housing optical, electrical and/or coaxial connections and active and/or passive components. The NID includes a base and a movable panel defining a connections area and a components area. In one embodiment, a first base defines a first compartment for housing the panel and a second base defining a second compartment for storing drop cable slack, the first base being movably attached to the second base to provide access to the drop cable slack without disturbing the connections. In another embodiment, the panel defines a first compartment for optical and electrical connections and a second compartment for active and passive components, the second compartment being accessible to only the service provider. In another embodiment, the panel is removable and interchangeable to permit the service provider to upgrade the services or to expand services provided to a subscriber.