Abstract:
Electronics modules and methods of making electronics modules are provided. An electronics module includes a substrate having an electronic circuit mounted thereon, a lens mount affixed to the substrate, the lens mount having a lens assembly mounted therein, and a liquid crystal cell affixed to the lens mount over the lens assembly, the liquid crystal cell having electrical terminals, wherein the lens mount includes adhesive containment pockets that are filled with a conductive adhesive so as to contact the electrical terminals of the liquid crystal cell, wherein the adhesive containment pockets include contacts that are electrically connected to the substrate. In some embodiments, the electronics module is a camera module.
Abstract:
A system and method for realizing specific security features for a mobile device that may store sensitive and private data by providing secured communications to a paired remote device. In this respect, both the mobile device (which may be a mobile phone, for example) and the paired remote device (which may be a keychain, for example) include a SIM card that may have identification data stored therein. Once paired, the two devices may communicate encrypted security messages back and forth in order to implement various security measures to protect data and wireless communications. Such messages may be generated from initial information known only to each respective device such as a randomly generated offset number and a common time reference.
Abstract:
The present disclosure is directed to a device and a method for achieving a precise capacitance of a capacitor. The method includes trimming a first capacitance of the capacitor to a second capacitance, the capacitor having a first conductive layer separated from a second conductive layer by a dielectric layer. Changing a first dielectric constant of the dielectric layer to a second dielectric constant, where the first dielectric constant corresponding to the first capacitance and the second dielectric constant corresponding to the second dielectric constant includes heating the dielectric layer above a threshold temperature for a time period. The heat is provided by either one of the plates of the capacitor or from a separate heater.
Abstract:
Lens alignment apparatuses, methods and optical devices are disclosed. In accordance with various embodiments, a lens alignment apparatus may include at least one lens element positioned in a lens body. A lens alignment interface coupled to the lens element may be configured to permit the lens element to be angularly deflected relative to an axis of symmetry of the lens body. In other embodiments, a method of improving the resolution of an optical device may include translating a lens along an optical axis to maximize resolution at a first location, and determining a resolution in a second location in the imaging plane. The resolution in the second location may be improved by angularly deflecting the lens, and the position of the lens may then be fixed.
Abstract:
Embodiments of the present disclosure are related to MEMS devices having a suspended membrane that are secured to and spaced apart from a substrate with a sealed cavity therebetween. The membrane includes openings with sidewalls that are closed by a dielectric material. In various embodiments, the cavity between the membrane and the substrate is formed by removing a sacrificial layer through the openings. In one or more embodiments, the openings in the membrane are closed by depositing the dielectric material on the sidewalls of the openings and the upper surface of the membrane.
Abstract:
Methods and apparatus for etching materials using tetramethylammonium hydroxide (TMAH) are described. The methods may involve including an additive when applying the TMAH to the material to be etched. The additive may be a gas, and in some situations may be clean dry air. The clean dry air may be provided with the TMAH to minimize or prevent the formation of hillocks in the etched structure. Apparatus for performing the methods are also described.
Abstract:
An image sensor device may include a mounting substrate having an IC-receiving cavity therein and a filter-receiving opening aligned with the IC-receiving cavity, an image sensor integrated circuit (IC) within the IC-receiving cavity and having an image sensing area aligned with the filter-receiving opening, and an adhesive bead on the image sensor IC surrounding the image sensing area. Furthermore, an infrared (IR) filter may be within the filter-receiving opening and have peripheral portions contacting the adhesive bead.
Abstract:
A system and process for forming a ball grid array on a substrate includes defining a plurality of openings in a resist layer on the substrate, and forming a plurality of openings in the resist layer, each positioned over a contact pad of the substrate. Flux is then deposited in the openings, and solder balls are positioned in each opening with the flux. Solder bumps are formed by reflowing the solder balls in the respective openings. The resist layer is then removed, leaving an array of solder bumps on the substrate. The flux can be deposited by depositing a layer of flux, then removing the flux, except a portion that remains in each opening. Solder balls can be positioned by moving a ball feeder across the resist layer and dropping a solder ball each time an aperture in the ball feeder aligns with an opening in the resist layer.
Abstract:
An integrated circuit package includes an integrated circuit die in a reconstituted substrate. The active side is processed then covered in molding compound while the inactive side is processed. The molding compound on the active side is then partially removed and solder balls are placed on the active side.
Abstract:
A process for manufacturing a 3D or PoP semiconductor package includes forming a redistribution layer on a reconstituted wafer, then laser drilling a plurality of apertures in the reconstituted wafer, extending from an outer surface of the reconstituted wafer to intersect electrical traces in the first redistribution layer. A solder ball is then positioned adjacent to an opening of each of the apertures. The solder balls are melted and allowed to fill the apertures, making contact with the respective electrical traces and forming a plurality of solder columns. The outer surface of the reconstituted wafer is then planarized, and a second redistribution layer is formed on the planarized surface. The solder columns serve as through-vias, electrically coupling the first and second redistribution layers on opposite sides of the reconstituted wafer.