Abstract:
A rotatable antenna apparatus has a fixed unit for attachment of the apparatus to an external structure, and a rotatable unit mounted on the fixed unit and comprising an antenna assembly and processing circuitry coupled to the antenna assembly for signal processing. An interface unit, coupled to both the fixed unit and the rotatable unit, routes a cable to provide a wired connection from the fixed unit to the processing circuitry. The interface unit includes a cable housing within which a coiled length of the cable is enclosed. A control mechanism coupled to the interface unit constrains the amount to which the length of cable is wound and unwound within the cable housing to inhibit application of a stretching stress on the cable during rotatable unit rotation. This provides a very efficient, cost effective mechanism for providing a wired connection to the processing circuitry included within the rotatable unit.
Abstract:
There is provided a node for use in a network, the node comprising: communication circuitry to communicate with a management server. Bootstrap circuitry initially identifies an intermediate node from at least one available node in the network in response to the communication circuitry being unable to communicate with the management server directly. The communication circuitry is arranged to communicate with the management server indirectly via the intermediate node when unable to communicate with the management server directly. Role assignment circuitry assigns a role to be performed by the node in the network based on whether the communication circuitry communicates with the management server directly, or indirectly via an intermediate node.
Abstract:
An antenna apparatus operates as a base station in a wireless network, with a method configuring a transmission beam within such antenna apparatus. The antenna apparatus has a rotatable antenna assembly employing selected transmission beam patterns, and a controller to rotate the antenna assembly altering its azimuth direction. During configuration mode, a sweep operation rotates the antenna assembly to selected azimuth directions. Quality metric determination circuitry determines, for each selected azimuth direction, a link quality metric for wireless terminals based on communication between the wireless terminals and the base station whilst the rotatable antenna assembly is at that selected azimuth direction. Transmission beam determination circuitry determines, from the link quality metrics determined for the wireless terminals at each selected azimuth direction, both a transmission beam pattern and an azimuth direction for subsequent communication with the wireless terminals. The antenna apparatus efficiently self-configures its transmission beam pattern and azimuth direction.
Abstract:
A communications schedule routes data between relay nodes forming a wireless relay network and interconnects relay nodes by an ordered sequence of communications links established over a wireless resource comprising resource blocks. Candidate connectivity patterns for the ordered sequence of communications links and candidate resource allocations are provided. For each candidate connectivity pattern, a level of a performance characteristic is calculated for a selected combination of the candidate resource allocations. Based on a desired level of the performance characteristic, a candidate connectivity pattern and associated selected combination of candidate resource allocations whose calculated level of the performance characteristic meets the desired level, is selected as the communications schedule. In response to a trigger condition, the performance level evaluation process and the selection process are repeated to re-select one of the candidate connectivity patterns and its associated selected combination of candidate resource allocations to be used as the communications schedule.
Abstract:
A method and system are provided for determining modulation control information and a reference signal design to be used by a transmitter node when generating a transmit signal to transmit from a transmitter (logical antenna) of the transmitter node over a channel of a wireless link to a recipient node. The modulation control information is used by the transmitter node to convert source data into an information bearing signal, and the information bearing signal is combined with a reference signal conforming to the reference signal design in order to produce the transmit signal. The method comprises (a) selecting a candidate reference signal design from a plurality of candidate reference signal designs, (b) determining channel state information for the channel, (c) determining, from the channel state information, signal to noise ratio information for said channel, and (d) for each of a plurality of candidate modulation control information, using the signal to noise ratio information to determine a quality indication for said channel. Steps (a) to (d) are then repeated for each candidate reference signal design in said plurality. Thereafter a winning quality indication is selected from the determined quality indications, and the combination of candidate reference signal design and candidate modulation control information associated with the winning quality indication is then output to the transmitting node. By such an approach, quality indications can be established for each combination of possible reference signal design and possible modulation control information, and hence not only is the inherent channel estimation accuracy achievable using each possible reference signal design considered, but also the data transmission efficiency and robustness to channel effects of each possible modulation control information is also taken into account.
Abstract:
A Doherty power amplifier including a main amplifier, an auxiliary amplifier and a controller governing the operation of the auxiliary amplifier, the controller being operative to switch the operational state of the auxiliary amplifier between an operational state and a non-operational state as a function of input signal voltage supplied to the power amplifier such that the auxiliary amplifier is inoperative when the input voltage is below an input voltage threshold and is operative when the input voltage is above the input voltage threshold.
Abstract:
A system for time synchronization of a network element including a GNSS receiver operative to receive at least one signal from at least one but less than four GNSS satellites, a locator operative to supply a location of a network element including the GNSS receiver to the GNSS receiver and a time synchronization calculator operative to time synchronize the network element with the GNSS satellites based on the at least one signal and the location.
Abstract:
A communication apparatus, terminal apparatus, system and method are provided for performing wireless communication. The communication apparatus supports a plurality of component carriers, wherein one of the plurality of component carriers is designated as a current primary component and at least one of the plurality of component carriers is designated as a current secondary component carrier providing at least downlink communication. The communication apparatus comprises control circuitry for controlling a component carrier testing procedure for one or more component carriers. The testing procedure comprises, for each component carrier:establishing an uplink connection from the terminal apparatus to the communication apparatus using the component carrier; and determining a quality of the uplink connection for the component carrier. The control circuitry is responsive to completion of the testing procedure to designate an updated primary component carrier on the basis of the qualities of the uplink connections determined for the component carriers.
Abstract:
A cellular communication apparatus includes antenna circuitry. A transceiver receives or transmits a signal using the antenna circuitry on a chosen channel of a portion of a radio spectrum. The portion of the radio spectrum is divided into one or more channels including the chosen channel each occupying a bandwidth of the portion of the radio spectrum. Control circuitry dynamically changes a configuration of the one or more channels of the radio spectrum and communication circuitry communicates the configuration of the one or more channels of the radio spectrum to one or more items of user equipment.
Abstract:
An apparatus and method are provided, the apparatus having a first antenna system providing a first sector of a telecommunications network, a second antenna system providing a second sector of the telecommunications network, a third antenna system for communicating with a base station of the telecommunications network to provide a first wireless backhaul path for the first and second sectors, and a fourth antenna system providing a wireless communication link to facilitate coupling of the apparatus into a mesh network of devices, the mesh network having at least one point of access into the telecommunications network, providing at least one further wireless backhaul path. Backhaul management circuitry is arranged, in at least one mode of operation, to control utilisation of the third and fourth antenna systems to provide backhaul connectivity to the telecommunications network for items of user equipment connected to the apparatus via the first and second antenna systems.