Abstract:
An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens. The refractive lens is preferably formed using grey-scale lithography and dry etching the first layer.
Abstract:
A microelectromechanical systems (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) in which the MEMS mirror is a bonded to the active region. This allows for a separate electrostatic cavity, that is outside the laser's optical resonant cavity. Moreover, the use of this cavity configuration allows the MEMS mirror to be tuned by pulling the mirror away from the active region. This reduces the risk of snap down. Moreover, since the MEMS mirror is now bonded to the active region, much wider latitude is available in the technologies that are used to fabricate the MEMS mirror. This is preferably deployed as a swept source in an optical coherence tomography (OCT) system.
Abstract:
An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal to form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm.
Abstract:
An integrated swept wavelength optical source uses a filtered ASE signal with an optical amplifier and tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a first tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal, and a second tunable Fabry Perot filter, installed on the bench, for spectrally filtering the amplified tunable signal from the amplifier. A self-tracking arrangement is also possible where a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system. For example, polarization control between components is no longer necessary.
Abstract:
A system and method for fast peak finding in an optical spectrum prioritizes the information it first generates and how the information is then forwarded from the system to a host computer, for example. A spectrum detection subsystem generates a spectrum of an optical signal. An analog-to-digital converter converts the spectrum into sample data. Finally, a data processing subsystem first detects the spectral locations of peaks in the spectrum using the sample data and then uploads the peak information to a host computer before performing processing to determine the shapes of the peaks and/or noise information for the optical signal, for example. The system is thus able to quickly find some information, such as whether or not channels or carriers are present, at what frequency the carriers are operating, and the carriers' power level, and send this information to the host computer. In contrast, information concerning spectral shape or the noise floor sent later in time.
Abstract:
In optoelectronic systems, package moisture can affect stress levels in dielectric coatings on MEMS devices. Specifically, as the moisture content in these dielectric coatings changes, there are concomitant changes in the material stress. These changes in material stress can affect the operation of the overall MEMS device. Specifically, in the context of tunable filters, moisture can lead to a drift in the size of the optical resonant cavity over time as changes in material stress affect the MEMS structures. According to the invention, a getter is added to the package to absorb moisture, and thereby stabilize the operation of the optical filter, and specifically prevent uncontrolled drift in the size of its optical cavity.
Abstract:
An bench assembly alignment apparatus and method provides for precision alignment of the assembly with an alignment feature on a substrate. The bench assembly may comprise, for example, a fiber array to be mounted to, and aligned with, an opto-electronic device within a device package. Passive alignment of the bench position and orientation is achieved in a manner that affords improved device yield and increased precision in an economical process that eliminates the need to fabricate an additional alignment surface on the side wall of the bench.
Abstract:
An optical component 100 adapted for attachment to an optical bench or submount has an alignment feature 310 that is used in the positioning of the optical component 100 relative to the optical bench. This alignment feature 310 is formed in an exterior wall 210 of the optical component. Further, according to the preferred embodiment, the alignment feature 310 has a re-entrant sidewall 320. This last characteristic facilitates the identification of precise location of the alignment by a vision system, for example, thus, allowing the accurate placement and installation of the optical component on the optical bench 10.
Abstract:
An apparatus and method for creating a supply of group V vapor required for various material processing applications such as crystal growth or the mass transport process, when applied to III-V materials (e.g., GaP) comprises a stable source of group V material (e.g., a GaP wafer), a process tube, and inner tube, a three-zone furnace incorporating a cold trap zone for the group III material, and a nullloosenull plug for the process tube. The phosphorus vapor is generated by using a source GaP wafer placed at a higher temperature than that of the main process wafer in the mass transport process. When high phosphorous vapor concentration is desired, other solid sources such as InP or red P can be used. To minimize vapor loss to the ambient, both wafers are enclosed in a quartz tube equipped with a quartz plug. However, the source wafer generates not only phosphorus but also gallium vapor. The latter interferes with mass transport and needs to be filtered out. This is conveniently accomplished by employing a larger (longer) process tube and by further placing the source in a smaller inner tube within the main process tube. The source inner tube first directs the vapor to a cooler region, where gallium is selectively condensed out before it reaches the process wafer.