Abstract:
A magnetic direction sensor, comprising a first array of magneto-resistive elements, said array having a first array primary direction and wherein some but not all of the magneto-resistive elements are wholly or partially provided at a first angle to the primary direction, and the remaining elements are also inclined with respect to the primary direction.
Abstract:
In one aspect, an electrical signal converter is disclosed. The exemplary electrical signal converter may include a plurality of ordered converter elements. Element selection logic may be provided to pseudorandomly select a pointer to a switch matrix, wherein the switch matrix maps converter elements according to a stepwise “delta-two-maximum pattern.” Advantageously, pseudorandom stepwise delta-two-maximum patterns may be applied both to a first order converter, and to a feedback converter for error correction.
Abstract:
A calibration system for an analog-to-digital converter (ADC) an internal ADC that receives an analog input and converts the analog input to digital multi-bit data. The calibration system also includes a reference shuffling circuit that shuffles reference values of comparators of the internal ADC. Further, the calibration system includes a calibration circuit that calibrates the comparators of the internal ADC. The calibration system includes a digital block that measures an amplitude based on the digital multi-bit data. Additionally, the calibration system includes calibration logic that controls the calibration circuit based on an output of the digital block.
Abstract:
Apparatus and methods for estimating a direct current offset in an upconverter are disclosed. Samples of a first signal are received. Values of a compensation signal are retrieved. For example, the compensation signal can be a component in a modified baseband signal, wherein the modified baseband signal is upconverted, downconverted, and filtered to generate the first signal. An estimate of a first DC offset induced by an upconverter is generated based at least partly on at least two selected samples of the first signal and corresponding values of the compensation signal.
Abstract:
Advanced TDM daisy-chain configurations utilize data transmission over a frame sync signal path with feedback to allow for communication between the master device and slave devices and/or between individual slave devices while maintaining a simple TDM communication interface. In certain daisy-chain configurations, the feedback path returns to the frame sync signal path between the master device and the first slave device, which allows for transmission of data from the last slave device to the master device and/or to the first slave device. In other daisy-chain configurations, the feedback path returns to the frame sync signal path between the first slave device and the second slave device, which allows for transmission of data from the last slave device to the first slave device (which may transfer data to the master device, e.g., over separate command and/or data lines) and/or to the first slave device.
Abstract:
In certain example embodiments, a system is provided that includes a circuit. The system also includes a reverse current control module that provides an isolated power supply in order to protect one or more devices in a power chain during one or more testing activities having one or more requirements.
Abstract:
A signal processing apparatus that includes a circuit in which a signal processing function is performed during a first time period, the signal processing apparatus including or being associated with a switch or a filter in a power supply to the signal processing apparatus so as to disconnect the signal processing apparatus from the power supply or to filter the power supply during a second time period that is coincident with at least part of the first time period.
Abstract:
A negative current protection system for a low side switching converter FET, for use with a switching converter arranged to operate high and low side FETs connected to an output inductor to produce an output voltage. The negative current protection system comprises a current sensing circuit which produces an output Vcs that varies with the current in the high side FET, a negative current threshold generator which produces a threshold signal −Ith which represents the maximum negative current to which the low side FET is to be subjected, and a comparison circuit arranged to compare the valley portion of Vcs and −Ith and to set a flag if Vcs
Abstract:
A ping pong comparator voltage monitoring circuit which includes first and second comparators having inputs connected to a voltage Vin to be monitored, and second inputs connected to first and second nodes, respectively. A multiplexer alternately couples the first and second comparator outputs to an output in response to a periodic control signal. A ground-referenced voltage Vref1 is provided at a third node and a voltage Vref2 referenced to Vref1 is at a fourth node. A hysteresis hyst1 is switchably connected between the third and first nodes, and a hysteresis hyst2 is switchably connected between the fourth and second nodes. Hyst1 and hyst2 are switched in when the mux output toggles due to a rising Vin, and are switched out when the mux output toggles due to a falling Vin.
Abstract:
An inductor current emulation circuit for use with a switching converter in which regulating the output voltage includes comparing an output which varies with the difference between the output voltage and a reference voltage with a ‘ramp’ signal which emulates the current in the output inductor. A current sensing circuit produces an output which varies with the current in the switching element that is turned on during the ‘off’ time, an emulated current generator circuit produces the ‘ramp’ signal during both ‘off’ and ‘on’ times, a comparator circuit compares the ‘ramp’ signal with at least one threshold voltage which varies with the sensed current and toggles an output when the ‘ramp’ exceeds the thresholds, and a feedback circuit produces an output which adjusts the ‘ramp’ signal each time the comparator circuit output toggles until the ‘ramp’ signal no longer exceeds the threshold voltages.