Abstract:
A luminometer is provided comprising a flow through waveguide and one or more detectors. The flow through waveguide has at least two openings and the sample is free to enter from one opening and exit from the other. The flow through waveguide can be made of material that guides emission light to a bottom end of the flow through waveguide. One or more detectors may be provided which detect the emission light coming out of the bottom of the flow through waveguide. A fluorometer/photometer is also provided that comprises a flow through waveguide, one or more excitation light sources, and one or more optical detectors. The flow through waveguide has a hollow region to hold the sample. The excitation light is introduced at an angle or perpendicular to one surface of the flow through waveguide. The flow through waveguide is made of material that can guide absorption and/or emission light to the bottom end of the flow through waveguide. There are one or more detectors that detect the emission light coming out of the bottom of the flow through waveguide.
Abstract:
Methods to fabricate high aspect ratio powder composite microstructures is provided by filling a molding composition containing a powdered material and a binder into a patterned mold, and releasing the cured composite microstructures from the mold. An alternate method is by filling a mix of powdered dense metals and low-melt alloys into a patterned mold, and releasing the melted and solidified composite microstructures from the mold. The mold is derived from lithographically defined parent mold. One example of the application is in the field of x-ray anti-scatter grids and nuclear collimators.
Abstract:
A luminometer is provided comprising a waveguide sample holder and one or more detectors. The waveguide sample holder may include a hollow region to hold the sample. The waveguide sample holder can be made of material that guides emission light preferably to a bottom end of the waveguide sample holder. One or more detectors may be provided which detect the emission light coming out of the bottom of the waveguide sample holder. A fluorometer is also provided that comprises a waveguide sample holder, one or more excitation light sources and one or more optical detectors. The waveguide sample holder has a hollow region to hold the sample. The excitation light is introduced at an angle or perpendicular to one surface of the waveguide sample holder. The waveguide sample holder is made of material that can guide emission light to the bottom end of the waveguide sample holder. There are one or more detectors that detect the emission light coming out of the bottom of the waveguide sample holder.
Abstract:
Means for monitoring treatment response and disease progression in subjects are disclosed, where the predictions are based on the change of number and/or size of circulating cancer associated macrophage-like cells (CAMLs) found in a biological sample, such as blood, from the subject.
Abstract:
Methods for predicting overall survival (OS) and progression free survival (PFS) of subjects having cancer, based on the presence of certain structures associated with circulating cancer associated macrophage-like cells (CAMLs), including micronuclei (MN), extracellular vesicles (EVs), enlarged polynuclearization (EPN), internalized intact cells and large internal cellular debris, are provided.
Abstract:
A new sensitive cell biomarker of solid tumors and viral infection is identified in blood. This biomarker can be used to determine presence of carcinomas, sarcomas, and viruses, rapid determination of treatment response, early detection of cancer, early detection of cancer recurrence, and may be used to determine therapy.
Abstract:
A microfilter comprising a polymer layer formed from epoxy-based photo-definable dry film, and a plurality of apertures each extending through the polymer layer. A microfilter comprising two or more polymer layers formed from epoxy-based photo-definable dry film, and a plurality of apertures or open areas each extending through the polymer layer. A method of forming a microfilter is also disclosed. The method includes providing a first layer of epoxy-based photo-definable dry film disposed on a substrate, exposing the first layer to energy through a mask to form a pattern, defined by the mask, in the first layer of dry film, forming, from the exposed first layer of dry film, a polymer layer having a plurality of apertures extending therethrough, the plurality of apertures having a distribution defined by the pattern, and removing the polymer layer from the substrate. Unique filter holder designs and methods appropriate to hold microfilters to collect the rare cells and allow performing assays in the filter holder are provided. The invention also describes the use of the microfilter and filter holder to collect rare cells from body fluids and perform assays. Rare cells collected on the microfilter in accordance with embodiments of the present invention can be used for medical and biological research applications.
Abstract:
A microfilter comprising a polymer layer formed from epoxy-based photo-definable dry film, and a plurality of apertures each extending through the polymer layer. A microfilter comprising two or more polymer layers formed from epoxy-based photo-definable dry film, and a plurality of apertures or open areas each extending through the polymer layer. A method of forming a microfilter is also disclosed. The method includes providing a first layer of epoxy-based photo definable dry film disposed on a substrate, exposing the first layer to energy through a mask to form a pattern, defined by the mask, in the first layer of dry film, forming, from the exposed first layer of dry film, a polymer layer having a plurality of apertures extending therethrough, the plurality of apertures having a distribution defined by the pattern, and removing the polymer layer from the substrate. Unique filter holder designs and methods appropriate to hold microfilters to collect the rare cells and allow performing assays in the filter holder are provided. The invention also describes the use of the microfilter and filter holder to collect rare cells from body fluids and perform assays. Rare cells collected on the microfilter in accordance with embodiments of the present invention can be used for medical and biological research applications. Microfilter material Pores o O:
Abstract:
A simple and accurate method for characterizing biomarkers in a biological sample using multiple rounds of fluorescent staining is described. The method involves the steps of quenching underrivatizing, amine stripping aid restaining (QUAS-R.) of cells, tissue or any biological sample.