Abstract:
A light control film is described that is formed with at least one security feature therein. The security feature is not visible when the film is viewed at an incorrect angle. The security feature only becomes visible when the film is viewed at the correct viewing angle or range of viewing angles. A plurality of security features can be formed in the film at substantially the same location(s), but at different angles, so that each security feature only becomes visible when the film is viewed at the correct respective viewing angle or range of viewing angles. The light control film can be integrated into any type of document where resistance to counterfeiting and fraudulent alteration are important, such as plastic identification or credit cards, or passports.
Abstract:
A security document and method of manufacturing the security document are disclosed. The security document includes a substrate including a laser reactive material and data. The security document also includes an optically variable tactile security feature formed in the laser reactive material, the optically variable tactile security feature including a non-tactile portion and a tactile portion. When viewed at a first viewing angle, the optically variable tactile security feature appears to be a first color, and at a second viewing angle different from the first viewing angle, the optically variable tactile security feature appears to be a second color.
Abstract:
Techniques are described herein for reducing bowing effects on a substrate while the substrate is being transported, for example in an elevator mechanism, from a first travel path to a second travel path, where the first travel path is offset from the second travel path so that the first travel path is not collinear with the second travel path. The substrate can be any substrate that is bowed and for which one wishes to eliminate or reduce the bow. One specific substrate that can benefit from the techniques described herein are personalized documents such as plastic cards including but not limited to financial (e.g. credit and debit) cards, drivers' licenses, national identification cards, gift cards, loyalty cards, employee badges, and other plastic cards which bear personalized data unique to the card holder and/or which bear other card or document information.
Abstract:
Systems, mechanisms, and methods are described that relate to the production of a custom printed insert(s) that can be custom printed prior to insertion of the custom printed insert(s) into an envelope along with a personalized card/carrier combination for mailing to the intended holder of the personalized card. The inserts are custom printed using an insert printer that is located in the inserter mechanism that is used to insert the insert(s) and the card/carrier combination into an envelope for mailing to an end user of the card. The inserter mechanism can have an “off-line” configuration, i.e. configured as a stand-alone mechanism, or configured for “in-line” use, i.e. used together with other mechanisms.
Abstract:
A topcoat layer that has a defined surface structure on an outer surface thereof once the topcoat layer is laminated to a substrate. The surface structure of the topcoat layer provides a matte surface finish to the underlying substrate. Any attempt to alter the substrate or the topcoat layer will result in disruption or destruction of the surface structure of the topcoat layer making such tampering evident. Replication of the surface structure of the topcoat layer by a counterfeiter is also difficult without the appropriate equipment.
Abstract:
Processes and systems are described that can produce images including both three dimensional holographic images and two dimensional variable data, which can provide personalized security features in a document. A photosensitive film can be pressed against a first reflective optical device. A laser beam can be directed through a selected first area of the photosensitive film onto the first reflective optical device to produce a three dimensional holographic image in the photosensitive film. A previously masked second area of the photosensitive film can be pressed against a second reflective optical device. The laser beam can project an image constructed by a spatial light modulator and can be directed through the second area of the photosensitive film onto the second reflective optical device to produce a two dimensional image in the second area. During the process, the web tension of the photosensitive film is controlled.
Abstract:
A barrier film, a document including a barrier coating, and a method for producing a document are described. A document includes a substrate, printed data on a surface of the substrate, and a barrier coating. The barrier coating is disposed between a portion of the printed data and a portion of an adhesive. The portion of the adhesive is disposed between a portion of a protective layer and a portion of the substrate.
Abstract:
A technique is described for determining pixel dropout in a printhead that has a plurality of print elements arrayed along an axis. In the technique, a dataset of integrated intensity values, in the printing direction on a substrate, of a captured image is generated and used to determine if pixel dropout has or may have occurred.
Abstract:
A method and a system that are used to indirectly read embossed characters on a personalized document for verifying or recognizing the embossed characters. The method and system digitize an image of the embossed characters that is formed on a foil when applying coloration material from the foil to the embossed characters on the personalized document. The captured image on the foil is then used to verify and/or recognize the embossed characters on the personalized document.
Abstract:
A booklet processing mechanism is described that includes a booklet guide and clamp system that is configured to act as the guide during entry and exit of the booklet into and from the mechanism, as well as clamp and hold the booklet in its proper position during a processing operation, for example by a laser or during vision verification. The booklet guide and clamp system is moveable between a first position for guiding an upper, free edge of an opened booklet and a second position where the upper, free edge is clamped against a backing plate. At the second, clamping position, the mechanism is out of the way so that it does not interfere with the processing operation. Because the guiding and clamping functions are combined into one mechanism, only one actuator and one sensor are needed for the guiding and clamping functions.