Abstract:
The methods for manufacturing micronized powder comprise pre-grinding processing, cryogenic freezing, and grinding of infeed material and warming, ferrous metal and fiber removal, accumulation, screening, and storage of micronized powder. Generally, the warming may involve recirculation of micronized powder through the warming apparatus. Further, the accumulation may permit the grinding and screening to occur at their respectively optimal rates, and the fiber removal, via use of a vibrating screener, may increase the purity of the micronized powder. In one embodiment, the micronized powder comprises micronized rubber powder ("MRP").
Abstract:
Today, rubber reclaim material exhibits excellent processability but compromises compound properties, whereas alternative options of recycled material are either cost prohibitive, degrade compound performance, or lead to unacceptable processing behavior. The renewed rubber of this invention can be processed much more easily than conventional recycled rubber compositions. It also consistently exhibits an array of better overall cured rubber properties with only minimal variations in characteristics, by using feedstocks made by various grinding methods. In the chemical functionalization of the renewed rubber compositions of this invention, the sulfur-sulfur bonds in micronized rubber powder are broken to partially devulcanize the rubber, with only a minimal number of carbon-carbon double bonds in the backbone of the polymer being broken. This allows for the renewed rubber of this invention to be used in rubber formulations that are used in manufacturing a wide array of rubber products, including tires, power transmission belts, conveyor belts, hoses, and a wide array of other products. The present invention more specifically discloses a method for manufacturing an environmentally friendly, chemically functionalized, renewed rubber composition having a highly desirable combination of physical properties and which exhibits excellent processability comprising the steps of (1) blending a micronized rubber powder with a processing aid and a chemical functionalizing agent to produce a blended mixture; (2) processing the blended mixture under conditions of high shear and low temperature to produce a reacted mixture; (3) adding a stabilizer to the reacted mixture to produce the chemically functionalized renewed rubber composition.
Abstract:
Methods for making elastomer compounds are described. The compounds include reclaimed vulcanized elastomer materials such as micronized rubber powders (MRP). The elastomeric compositions exhibit lower tensile strength variability. As described herein, shorter mixing times can be used to achieve the same minimum tensile strength as composition containing no reclaimed material. The elastomeric compositions may include various proportions of reclaimed vulcanized elastomer materials. A rubber compound is also described which comprises reclaimed material and which has a minimum tensile strength equal to or higher than a predetermined minimum tensile strength associated with a compound containing no reclaimed material. The rubber compound is manufactured with a reduced mixing time compared to that of the compound with no MRP.