Abstract:
DNS name resolution is integrated into each node in a network storage cluster, to allow load balancing of network addresses, using a weighted random distribution to resolve DNS requests. A node in the cluster gathers statistics on utilization of resources, such as CPU utilization and throughput, on nodes in the cluster and distributes those statistics to all other nodes. Each node uses the same algorithm to generate weights for the various IP addresses of the cluster, based on the statistics distributed to it. The weights are used to generate a weighted list of available network addresses. In response to a DNS request, a DNS in a given node randomly indexes into the weighted address list to resolve requests to a network address. The weights are chosen so that the DNS is likely to pick an IP address which has a low load, to balance port and node usage over time.
Abstract:
Fault isolation capabilities made available by user space can be provided for a embedded network storage system without sacrificing efficiency. By giving user space processes direct access to specific devices (e.g., network interface cards and storage adapters), processes in a user space can initiate Input/Output requests without issuing system calls (and entering kernel mode). The multiple user spaces processes can initiate requests serviced by a user space device driver by sharing a read-only address space that maps the entire physical memory one-to-one. In addition, a user space process can initiate communication with another user space process by use of transmit and receive queues similar to transmit and receiver queues used by hardware devices. And, a mechanism of ensuring that virtual addresses that work in one address space reference the same physical page in another address space is used.
Abstract:
A method and system for visually displaying and navigating a computer storage system are disclosed. The storage system can be graphically browsed to select a particular entity in the storage system. A graphical timeline of events relating to the selected entity is displayed. Selecting an event from the timeline displays a graphical representation of the storage system at a time relating to the selected event or additional graphical detail about the selected event. Based on the selected event, configuration information for the entity in the storage system that experienced the event can be displayed and compared against the configuration of the entity at a different time or against a predefined template.
Abstract:
A network storage server receives multiple write requests from a set of clients via a network and internally buffers multiple data blocks written by the write requests. At a consistency point, the storage server commits the data blocks to a nonvolatile mass storage facility. The consistency point process includes using a storage operating system in the network storage server to compress the data blocks, encrypt selected data blocks, and store the compressed and (possibly) encrypted data blocks in the nonvolatile mass storage facility. Data blocks can also be fingerprinted in parallel with compression and/or encryption, to facilitate subsequent deduplication. Data blocks can be indexed and classified according to content or attributes of the data. Encryption can be applied at different levels of logical container granularity, where a separate, unique cryptographic key is used for each encrypted data container.
Abstract:
A method and system for reading exception data by a storage server from a storage controller. An exception event is detected at the storage server. The storage server registers with the controller, such that only one storage server can read the exception data at a time. If the storage server is registered with the controller, the storage server reads the exception data. If the storage server does not successfully register with the controller, the controller keeps track of which storage servers have not read the exception data, to ensure that all storage servers can read the data.
Abstract:
In an embodiment of the invention, an apparatus uses a LUN (logical unit number) data type for storage allocation. The apparatus includes a storage appliance that specifies a LUN data type for a LUN. The storage appliance then allocates data blocks in the LUN based on the LUN data type. The storage appliance allocates data blocks in the LUN as contiguous data blocks or as non-contiguous data blocks, based on the LUN data type. The LUN data type may be, for example, database data type, user data type, or binary data type.
Abstract:
Techniques are provided for implementing a snapshot copy operation between endpoints. One or more snapshots (e.g., snapshots of an on-premise volume) is stored within a source endpoint, such as a source bucket of an object store. A post operation is executed to copy objects comprising snapshot data of a snapshot from the source endpoint to a destination endpoint. A get operation and a tracking object such as a cookie is used to track progress of copying the objects from the source endpoint to the destination endpoint. The tracking object is used to restart the copying of the objects from a point where the copying left off (e.g., in the event there is a failure) without having to restart from the beginning.
Abstract:
Techniques are provided for implementing data requests associated with objects of an object store. A data connector component may be instantiated as a container for processing data requests associated with backup data stored within objects of an object store. The data connector component may evaluate the object store to identify snapshots stored as the backup data within the objects of the object store according to an object format. The data connector component may provide a client device with access to backup data of the snapshots.
Abstract:
A technique provides efficient management of policies for objects of a distributed storage architecture configured to service storage requests issued by one or more clients of a storage cluster. The objects may include volumes for storing data served by storage nodes of the cluster and the policies may include quality of service (QoS) policies. The technique enables dynamic grouping of the volumes as management domains and applying attributes, such as performance settings of the QoS policies, to the management domains. A group of volumes may be organized as a management domain and a QoS policy may be applied to the domain. If membership of the management domain is modified, the QoS policy is automatically applied to the added volume or stripped from the removed volume. If a performance setting of the policy is modified, the modification is atomically applied and propagated to each volume of the management domain.
Abstract:
Methods and systems for a networked storage system is provided. One method includes creating a first snapshot for data units stored at a persistent memory of a computing device, the data units managed by a first file system; transferring metadata associated with the data units and the data units stored at the persistent memory to a storage device managed by a second file system using a logical object, the second file system executed by a storage system interfacing with the computing device; and generating a second snapshot of the logical object at the storage device, the second snapshot including data units and associated metadata of the first snapshot.