Abstract:
One aspect of the present invention relates to a system and method for controlling thermal expansion on an EUV mask during EUV photolithography. The system includes an EUV photolithography system for irradiating one or more layers of a wafer through one or more gratings of a patterned EUV mask, whereby heat accumulates on at least a portion of the patterned EUV mask during the irradiation of the one or more layers of the wafer; an EUV mask inspection system for monitoring the one or more gratings on the mask to detect expansion therein, the inspection system producing data relating to the mask; and a temperature control system operatively coupled to the inspection system for making adjustments to the EUV photolithography system in order to compensate for the detected expansion on the mask. The method involves employing feedback and feed forward control to optimize the current and future EUV photolithography processes.
Abstract:
An SOI device structure is provided which facilitates mitigation of charge build up caused by floating body effects. A ground contact is formed from a top insulating layer to a bottom silicon layer. The ground contact extends through the insulating layer, a stop layer, an isolation region and an oxide layer to the bottom silicon layer. The ground contact is fabricated along with the formation of local interconnects.
Abstract:
A system for regulating heating temperature of a material is provided. The material may be a photoresist, a top or bottom anti-reflective coating, a low K dielectric material, SOG or other spin-on material, for example. The system includes a plurality of lamps and optical fibers, each optical fiber directing radiation to and heating a respective portions of a bakeplate on which the material is to be placed. In one embodiment, the temperature at various locations on the material placed on the bakeplate is determined and the heating rates are controlled in response to those measurements. In another aspect of the invention, the temperature at various portions of the bakeplate is determined and controlled. In this latter aspect, uniform heating of the material is a consequence of uniform bakeplate temperature.
Abstract:
The present invention relates to illuminating an interior portion of a processing chamber in a semiconductor processing system. A light emitting diode is located in the chamber to illuminate the interior of the chamber to facilitate viewing the interior of the chamber.
Abstract:
The present invention provides a system and process for controlling the application of patterned resist coatings in an integrated circuit manufacturing process that employs multiple reticle patterns. One aspect of the invention relates to obtaining scatterometry measurements from a patterned resist and using the measurements to determine whether the correct reticle pattern was employed in forming the patterned resist. According to another aspect of the invention, the reticles are provided with grating patterns in addition to reticle patterns, whereby when the reticles are printed, gratings are formed in the resist. The gratings can be used, with scatterometry, to identify the reticle pattern. The reticles can be configured so that the gratings form in a non-functional portion of a wafer, such as a portion along a score line. Where it is, determined that the correct reticle pattern was not used, corrective action can be taken such as stripping the resist and reprocessing the affected wafers.
Abstract:
The present invention relates to a methodology of fabricating a local interconnect. The methodology includes the steps of forming an organic stop layer over a semiconductor structure having at least one conductive region, forming an insulating layer over the organic layer, forming a photoresist layer over the insulating layer, patterning the photoresist layer with at least one opening above the at least one conductive region, etching at least one opening in the insulating layer, concurrently stripping the photoresist layer and an exposed portion of the organic layer and filling the at least one opening with a conductive material to form the local interconnect.
Abstract:
The present invention relates to illuminating an interior portion of a processing chamber in a semiconductor processing system. A fiber optic light source is operatively associated with the processing chamber to illuminate the interior of the chamber to facilitate viewing the interior of the chamber.
Abstract:
A method of forming a semiconductor device is described. A bottom anti-reflective coating (BARC) is formed in a plurality of holes and on a first surface of a layer of a semiconductor device. A scatterometry measurement on at least a portion of the BARC is performed to produce measurement diffraction data. A thickness of the BARC in the plurality of holes is predicted by comparing the first diffraction data to a model of diffraction data to provide a predicted thickness, tp, and it is determined if the predicted thickness, tp, is within a target thickness range, &Dgr;td. The forming of the BARC is controlled in response to the prediction of the BARC thickness. A corresponding thickness control device for controlling the BARC thickness is also disclosed.
Abstract:
A bi-layer trim etch process to form integrated circuit gate structures can include depositing an organic underlayer over a layer of polysilicon, depositing an imaging layer over the organic underlayer, patterning the imaging layer, selectively trim etching the organic underlayer to form a pattern, and removing portions of the polysilicon layer using the pattern formed from the removed portions of organic underlayer. Thus, the use of thin imaging layer, that has high etch selectivity to the organic underlayer, allows the use of trim etch techniques without a risk of resist erosion or the aspect ratio pattern collapse. That, in turn, allows for the formation of the gate pattern with widths less than the widths of the pattern of the imaging layer.
Abstract:
A system and method is provided that facilitates the application of a uniform layer of developer material on a photoresist material layer. The system includes a multiple tip nozzle and a movement system that moves the nozzle to an operating position above a central region of a photoresist material layer located on a substrate, and applies a volume of developer as the nozzle scan moves across a predetermined path. The movement system moves the nozzle in two dimensions by providing an arm that has a first arm member that is pivotable about a first rotational axis and a second arm member that is pivotable about a second rotational axis or is movable along a translational axis. The system also provides a measurement system that measures the thickness uniformity of the developed photoresist material layer disposed on a test wafer. The thickness uniformity data is used to reconfigure the predetermined path of the nozzle as the developer is applied. The thickness uniformity data can also be used to adjust the volume of developer applied along the path and/or the volume flow rate.