Abstract:
A lubrication system for a frac pump includes a lubrication system housing, a lubricant tank held by the lubrication system housing, a heating device held by the lubrication system housing, a cooling device held by the lubrication system housing, and a filtration device held by the lubrication system housing. The lubrication system housing is configured to be at least one of mounted to a frac pump housing of the frac pump or held within the frac pump housing.
Abstract:
A valve assembly adapted for use in oil and gas operations. In one aspect, the valve assembly includes a valve body defining an internal region, an inlet passageway, and an outlet passageway, the inlet and outlet passageways extending into the internal region: a valve seat connected to the valve body and defining a fluid passageway; a clapper extending within the internal region and defining an annular groove; and a seal extending within the annular groove of the clapper and adapted to sealingly engage the valve seat. In an example embodiment, the clapper is actuable between an open configuration, in which fluid flow is permitted through the fluid passageway; and a closed configuration, in which the seal sealingly engages the valve seat to at least partially restrict fluid flow through the fluid passageway.
Abstract:
A manifold through which a fluid is adapted to flow. The manifold includes an elongated member at least partially defining a fluid chamber through which the fluid is adapted to flow, a longitudinal axis, and an interior surface; a fluid liner disposed within the fluid chamber and adapted to dynamically respond to pressure fluctuations within the fluid chamber as the fluid flows therethrough; and a wear indicator positioned radially between the interior surface of the elongated member and the longitudinal axis. The fluid liner is subject to wear and/or erosion due to the flow of the fluid therethrough and/or the dynamic response of the fluid liner to the pressure fluctuations within the fluid chamber. The wear indicator is adapted to indicate the degree to which the fluid liner has been subjected to the wear and/or erosion.
Abstract:
A method and apparatus for a reciprocating pump assembly, including a crosshead and a connecting rod. The crosshead includes a main body having a cylindrical bore formed therethrough and defining a bearing surface, and a window formed through the main body and into the cylindrical bore. The connecting rod includes a small end disposed within the cylindrical bore and a beam portion extending through the window and being connected to the small end. In an exemplary embodiment, a bearing including a tubular body and a cutout is disposed within the cylindrical bore. In another exemplary embodiment, a clamp engages both the main body of the crosshead and the respective opposing end portions of the small end, thus reducing axial displacement of the small end relative to the crosshead.
Abstract:
A skid for supporting a reciprocating pump assembly, the reciprocating pump assembly including a power end frame assembly having a pair of end plates and a plurality of middle plates disposed between the end plates. The end plates each have at least a pair of feet and the middle plates each having at least one foot. The skid includes a base and a plurality of pads extending from the base. At least a portion of the plurality of pads correspond to the end plate feet and at least another portion of the plurality of pads correspond to the at least one foot of each middle plate.
Abstract:
A power end frame assembly for a reciprocating pump that includes a first and second end plate segment each including annular bearing support surfaces configured to support a crankshaft bearing assembly. At least one middle plate segment is disposed between the first and second end plate segments and includes an annular bearing support surface configured to support a crankshaft bearing assembly. The annular bearing support surfaces of the first and second end plate segments and the at least one middle plate segment each have a diameter and are coaxially aligned. The diameter of at least one of the first and second end plate segments is different from the diameter of the at least one middle plate segment to facilitate insertion and removal of the crankshaft bearing assembly from the power end frame assembly.
Abstract:
In one aspect, there is provided a damper control system for a reciprocating pump assembly according to which control signals are sent to electromagnets. In another aspect, there is provided a method of dampening vibrations in a pump drivetrain according to which a beginning of torque variation is detected and at least a portion of the torque variation is negated. In another aspect, signals or data associated with pump characteristics are received from sensors, torque characteristics and damper response voltages per degree of crank angle are calculated, and control signals are sent to electromagnets. In another aspect, a damper system includes a fluid chamber configured to receive a magnetorheological fluid; a flywheel disposed at least partially within the fluid chamber and adapted to be operably coupled to a fluid pump crankshaft; and a magnetic device proximate the flywheel. The magnetic device applies a variable drag force to the flywheel.
Abstract:
A valve seat at least partially formed of a ceramic material for use in a fracturing pump includes a first body and a second body. The first body is configured to be inserted into a fluid passageway of the fracturing pump. The first body has an outer diameter, D1. The second body extends radially from the first body and has an outer diameter, D2, greater than the outer diameter, D1, of the first body. The second body is at least partially formed of the ceramic material.
Abstract:
According to one aspect, a manifold assembly includes a skid, a low pressure manifold connected to the skid, and a high pressure manifold connected to the skid. In another aspect, the high pressure manifold has a modular configuration so that the high pressure manifold is disconnectable in whole or in part from the skid, and reconnectable in whole or in part to the skid. In yet another aspect, the high pressure manifold includes high pressure modules, all of which are in fluid communication with each other and each of which is adapted to be in fluid communication with at least one pump. In still yet another aspect, the low pressure manifold includes one or more flow lines, the high pressure manifold includes fittings, and the manifold assembly includes vibration isolators to dampen dynamic loading, the vibration isolators being disposed between the fittings and the one or more flow lines.
Abstract:
A fluid end block for attachment to a power end of a high pressure reciprocating pump includes a main body portion having an outwardly facing body forward face, an outwardly facing body rear face opposite the body forward face, and opposing side surfaces. A web portion protrudes outwardly from the outwardly facing body forward face. The web portion may have an outwardly facing web forward face and a curvilinear side surface. The web portion may be integral with the main body portion. A plurality of bosses protrude from the web forward face and having a forward facing end. The plurality of bosses may be integral with the main body portion and the web portion. A plunger bore extends through one of the plurality of bosses configured to receive a reciprocating plunger.