Abstract:
A method for upgrading an access controller that controls and coordinates a plurality of radio nodes (RNs) each associated with a cell in a cluster of cells belonging to a radio access network includes initializing a new access controller. The new access controller is to replace a current access controller currently controlling and coordinating the plurality of RNs cell in the cluster. A most lightly loaded one of the plurality of RNs is identified. All UEs currently attached to the identified RN is caused to be handed off to a neighboring cell in the cluster. After all the UEs have been handed-off from the identified RN, the identified RN is rebooted so that it is being controlled and coordinated by the new access controller. The steps of causing the UEs to be handed-off and rebooting the identified RN are repeated for a second one of the plurality of RNs.
Abstract:
Systems and methods are disclosed for managing an aggregated self-organizing network (A-SON). In such, a plurality of small cells is grouped into clusters using available topology information. In one implementation, a subset of clusters is assigned to groups of a first type, such that the clusters within a group of the first type have minimal RF connectivity. For example, scanning or updating of RF parameters may then be coordinated such that adjacent clusters do not scan or update simultaneously but clusters within groups of the first type do have at least partially overlapping scans or updates. Similarly, subsets of clusters may be assigned to first and second groups of a second type, such that the clusters within a first group of the second type have sufficient coverage to provide RF connectivity to clusters within the second group, if the second group encounters a service interruption. Other benefits are also described.
Abstract:
A method of joint processing of data in a radio access network (RAN) that includes a plurality of radio nodes each associated with a cell and a services node operatively coupled to the radio nodes is provided. The services node provides connectivity to a core network. The method includes determining that a plurality of first UEs (User Equipment) each being serviced by a selected set of the cells is to operate in accordance with a hybrid joint processing scheme. Information is transferred between the plurality of first UEs and the radio nodes in accordance with the hybrid joint processing scheme by performing L1 layer processing on the radio nodes and L2 layer processing at the services node.
Abstract:
Systems and methods are provided for resolving Primary Scrambling Code (PSC) ambiguity. A radio link having the same PSC as that reported by user equipment (UE) may be created on some or all internal cells which are chosen based on radio frequency (RF) proximity to a serving cell of the UE or one or more iterations of a PSC resolution set selection process. If the UE is reporting the PSC of one of these cells, the UE and a Node Bs will be able to successfully complete a synchronization procedure to add one of the radio links to the UE's active set, while any remaining created radio links can be deleted. After a certain number of successful radio link additions, the combination of the PSC and active set may be considered to be resolved, therefore, negating a need to resolve the PSC in subsequent soft handover requests.
Abstract:
A radio access network, such as an LTE E-RAN, employs a hierarchical architecture and includes a services node that provides connectivity between the radio nodes in the RAN and a core network. The RAN employs a hybrid coordinated scheduling scheme in which independent schedulers are running on the services node and the radio nodes. In this way the services node can allocate scheduling resources for some of the UEs in the RAN while the radio nodes can allocate scheduling resources for the remaining UEs in their respective serving cells. In some cases a prioritization approach is used in which the radio nodes do not schedule any radio resources that have already been scheduled by the services node.
Abstract:
A beacon cell adapted for use in a small cell RAN includes dual identities—a beacon identity and a regular or “live” identity—in which the identities are individually configured to address differing performance requirements in the small cell RAN. The beacon identity in the cell is specially configured to meet the performance requirements for mobile user equipment (UE) to be able to quickly and easily move from a macrocell base station in a mobile operator's network to the small cell RAN using a process called “reselection.” The live identity is configured to meet all requirements for service to be provided to the UE within the small cell RAN. Once captured by the beacon identity of the beacon cell, the UE can then immediately reselect to the live identity of the cell which operates in a conventional manner.
Abstract:
A method for assessing an impact of a design choice on a system level performance metric of a radio access network (RAN) deployed in an environment includes receiving messages from a plurality of UEs over time by a plurality of RNs in the RAN. A design choice is selected for a set of operating parameters of the RAN. One or more of measurement values in each of the received messages and the selected design choice are processed to compute a set of derivatives. A system level performance metric is determined as a function of the computed set of derivatives.
Abstract:
A method is shown for allocating a plurality of channels to a plurality of radio nodes (RNs) in a radio access network (RAN). In accordance with the method, an initial RN is selected from among the plurality of RNs. A first of the plurality of channels is assigned to the initial RN. The first channel is selected such that external interference experienced by the initial RN from sources other than the RAN on the first channel is minimized. A second RN is selected from among the plurality of RNs. A second of the plurality of channels is assigned to the second RN. The second channel is selected such that a metric reflective of an information carrying capacity of the RNs that have already been assigned one of the plurality of channels is maximized. The assigned channels are allocated to the respective RNs to which they have been assigned.