Abstract:
The present invention provides an optical device comprising one or more heat pipes with a desired level of thermal coupling with the light-emitting elements which are positioned along a periphery of the evaporator surface portion of the heat pipe in such a way that they are thermally coupled to the heat pipe. In one embodiment, the heat pipe of the present invention can be readily integrated with optical elements such as reflectors or collimators.
Abstract:
The present invention provides an illumination module comprising one or more light-emitting elements which are thermally coupled to one or more heat extraction elements. The one or more heat extraction elements are configured to transfer heat in substantially a first direction. One or more optical elements are further integrated into the illumination module, wherein the one or more optical elements are optically coupled to the one or more light-emitting elements and configured to redirect the light emitted by the one or more light-emitting elements in substantially the first direction.
Abstract:
The invention provides a lighting device package with one or more light-emitting elements operatively coupled to a substrate; a compound lens disposed to interact with light emitted by the one or more light-emitting elements, the compound lens including at least an inner lens element and an outer lens element, the inner lens element having a first index of refraction and the outer lens element having a second index of refraction, the first index of refraction being greater than the second index of refraction; the compound lens, the one or more light-emitting elements and the substrate defining an enclosed space between them; and an encapsulation material filling at least part of said space, the encapsulation material having a third index of refraction equal or greater than the first index of refraction.
Abstract:
The present invention provides a method and apparatus of using light-emitting elements for illumination as well as communication of data, wherein potential flicker due to sub-fusion frequency data correlations can be reduced compared to prior art techniques, while reducing redundancy in the data transmission. The intensity of the illumination from the light-emitting elements is controlled by a dimming signal such as a pulse width modulation (PWM) signal or a pulse code modulation (PCM) signal, for example. An amplitude-modulated data signal is then superimposed on the dimming signal for communication of data. The dimming signal thus acts as a carrier signal for the data signal. A sensing means is then used to receive the data signal by detecting all or part of the illumination from the light-emitting elements. The data signal can subsequently be extracted from the detected illumination.
Abstract:
The present invention provides a method and apparatus for digitally controlling a lighting device which enables a desired lighting device operational set point to be reached in a rapid manner while substantially reducing overshoot and oscillation about the desired lighting device operational set point. In particular the present invention is enabled by a PID controller configured to vary the PID controller parameters based on a relationship based at least in part on the desired lighting device operational set point, the present lighting device operational point or both.
Abstract:
The present invention provides a drive and control apparatus provides a desired switched current to a load including a string of one or more electronic devices. A voltage conversion means, based on an input control signal converts the magnitude of the voltage from the power supply to another magnitude that is desired at the high side of the load. A dimming control means provides control for activation and deactivation of the load and may further provide a means for current limiting. A feedback means is coupled to the voltage conversion means and a current sensing means and provides a control signal to the voltage conversion means that is indicative of voltage drop across the current sensing means which represents the current flowing through the load. Based on the control signal received, the voltage conversion means can subsequently adjust its output voltage such that a constant switched current is provided to the load.
Abstract:
The present invention provides an optical device configured for the creation of an asymmetric illumination beam pattern while additionally mixing the light created by two or more light-emitting elements. The optical device comprises a reflector body which extends between an entrance aperture and an exit aperture, wherein the two or more light emitting elements are positioned relative to the entrance aperture and light is reflected within the reflector body exiting at the exit aperture. The reflector body includes a first pair of walls including symmetric reflective elements and a second pair of walls orthogonal to the first pair of walls, wherein the second pair of walls includes asymmetric reflective elements. The first pair of walls provides a means for mixing the light generated by the two of more light-emitting elements and generating a symmetric beam pattern about a first axis. Along a second axis, orthogonal to the first axis, the second pair of walls provides a means for mixing the light generated by the two or more light-emitting elements and generating an asymmetric beam pattern.
Abstract:
The present invention provides a pulse-width modulation (PWM) method and apparatus, and light source driven thereby. In particular, the present invention provides a PWM method and apparatus for generating a PWM signal having a desired resolution and frequency using generating means traditionally limited to providing PWM signals having a lower resolution and/or frequency. The PWM method and apparatus of the present invention may be used in a number of applications where a relatively high PWM resolution and/or frequency is desired, but where selection of generating means for generating such PWM signals is relatively limited by cost and/or other such constraints. For example, a PWM signal generated by the method and apparatus of the present invention may be useful in accurately controlling the output of the one or more light-emitting elements of a light source, namely to control a dimming and/or colour level thereof, without using driving components that may be relatively costly for the application at hand.
Abstract:
The present invention provides a method and apparatus for coupling a device to a heat pipe, wherein a heat transformable material is placed at the location on the heat pipe at which the device is to be coupled. The device is positioned relative to this location and in contact with the heat transformable material and subsequent heat is applied to the end of the heat pipe opposite the coupling location. The external heat which is applied to the heat pipe is transferred along the heat pipe to the proximity of the coupling location. The heat transformable material undergoes a change due to the application of heat and mates the device with the heat pipe. The heat transformable material changes into a substantially solid state upon the removal of the external heat source, thereby coupling the device to the heat pipe.