Abstract:
Methods, systems, and compounds for degrading chlorinated compounds in water. A facile aqueous-based surface treatment of zero-valent iron is provided to increase the reactivity of a zero-valent iron material for degrading chlorinated compounds in the water without the use of a noble metal catalyst. Such a facile aqueous-based surface treatment can be implemented as a surface sulfidation pre-treatment of iron to increase its reactivity towards chlorinated contaminants in water. The disclosed facile aqueous-based surface treatment increases reactivity utilizing sulfur compounds for use in the degradation of the chlorinated compounds in the water.
Abstract:
The present invention includes compositions, methods of making and using the compositions for modulating the immune response in a subject by providing a vaccine composition having a pollen/spore disposed in a pharmaceutical carrier for delivery to a subject, wherein the pollen/spore comprises multiple pores that connect an outer surface of the pollen/spore to an inner cavity and one or more antigens disposed on the outer surface, in the inner cavity, in the multiple pores, or a combination thereof, wherein the one or more antigens modulate an immune responses in the subject.
Abstract:
An SP-141 compound is a novel small molecule that can serve as a molecular-targeted chemotherapeutic agent. In one embodiment, the labeled compound can comprise SP-141, which comprises 6-methoxy-1-(naphthalen-1-yl)-9 H-pyrido[3,4-b]indote. The compound inhibits expression of oncogenes such as the Mouse Double Minute 2 protein. The compound can bind directly to Mouse Double Minute 2 to inhibit cancer growth including breast cancer growth.
Abstract:
A microfluidic device includes a substrate comprising an inlet in fluid communication with one or more conduits and one or more parking loops in fluid communication with the one or more conduits. Each parking loop includes a bypass channel and a lower branch with a fluidic trap capable of retaining one or more drops of a sample solution, wherein the bypass channel has a smaller hydrodynamic resistance than the lower branch within the fluidic trap and a hydrodynamic resistance ratio (RT/RB) between the lower branch within the fluidic trap and the bypass channel is from 1.5 to 3.2. One or more outlets are in fluid communication with at least one of the bypass channels. A method for making the microfluidic device is also disclosed.
Abstract:
The present invention provides a novel composition of matter useful for the treatment of neoplastic diseases. The novel composition is synergistic and comprised of galectin-3C in combination with a proteasome inhibitor, the combination having a pharmacologic activity greater than the expected additive effect of its individual components. Other embodiments of the invention provide novel synergistic compositions of galectin-3C with a proteasome inhibitor capable of reducing or overcoming resistance that develops to the proteasome inhibitor or reducing the adverse side effects from the proteasome inhibitor through increasing the therapeutic efficacy of lower doses.
Abstract:
Nucleic acid molecules such as shRNA clusters and artificial miRNA clusters are disclosed, Also disclosed are methods of use, compositions, cells, viral particles, and kits relating to the nucleic acid molecules disclosed herein. The disclosure provides, at least in part nucleic acid molecules such as shRNA clusters encoding shRNA-like molecules and artificial miRNA clusters encoding modified pri-miRNA-like molecules. The shRNA clusters and artificial miRNA clusters disclosed herein can be used, for example, to produce artificial RNA molecules, e.g., RNAi molecules. Cells, viral particles, compositions (e.g., pharmaceutical compositions), kits, and methods relating to the nucleic acid molecules, e.g., shRNA clusters and artificial miRNA clusters, are also disclosed. The nucleic acid molecules (e.g., shRNA clusters and artificial miRNA clusters), artificial RNA molecules (e.g., RNAi molecules), cells, viral particles, compositions (e.g., pharmaceutical compositions), and kits and methods disclosed herein can be used to treat or prevent a disease, e.g., HIV infection and/or AIDS.
Abstract:
The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.
Abstract:
The present invention includes compositions and methods for the diagnosis and treatment of lung cancer with a recombinant tumor-associated antigen loaded antigen presenting cell that generates a cytotoxic T lymphocyte specific immune response to at least one of SP17, AKAP-4, or PTTG1 expressed by one or more lung cancer cells.
Abstract:
Disclosed is a device and method for forming a chemically patterned paper microfluidic device (cPMD) having controllable hydrophobic regions for purposes of providing a repeatable and versatile production with no temperature limitations similar or expensive printers, enabling point of care sensor devices. The disclosed invention comprises multilayer capability, including the ability for various biomolecules to be immobilized with charge interaction. The paper-based microfluidic platform as disclosed repeatable, versatile, cost effective, and allows for the creation of complex channels using the settling time calculated from calibration results. The disclosed system supports a wide variety of scenarios for testing, diagnostics and drug delivery, and related products and services.
Abstract:
A microwave-induced heating of CNT filled (or coated) polymer composites for enhancing inter-bead diffusive bonding of fused filament fabricated parts. The technique incorporates microwave absorbing nanomaterials (carbon nanotubes (CNTs)) onto the surface or throughout the volume of 3D printer polymer filament to increase the inter-bead bond strength following a post microwave irradiation treatment and/or in-situ focused microwave beam during printing. The overall strength of the final 3D printed part will be dramatically increased and the isotropic mechanical properties of fused filament part will approach or exceed conventionally manufactured counterparts.