面向情报大数据的决策树增量学习方法

    公开(公告)号:CN107194468A

    公开(公告)日:2017-09-22

    申请号:CN201710259763.1

    申请日:2017-04-19

    CPC classification number: G06N20/00

    Abstract: 本发明提供的是一种面向情报大数据的决策树增量学习方法。在分裂结点之前,把结点中每个候选属性的多个属性值分别合并成两组,选择信息增益最大的候选属性将结点分为两个分支。在选择下一个将要分裂的结点方面,为所有候选分裂结点计算对应的结点分裂度量值,并且总是选择结点分裂度量值最大的候选结点作为下一个分裂结点。IID5R增加了评估分类属性质量的功能。本发明将NOLCDT与IID5R相结合,提出了一个混合分类器算法HCS,主要有两个阶段组成:构建初始决策树和增量学习。根据NOLCDT建立初始决策树,然后使用IID5R进行增量学习。HCS算法综合了决策树以及增量学习方法的优点,既便于理解又适于增量学习。

    一种用于大数据环境下可支持多格式特性的数据空间检索方法

    公开(公告)号:CN103902699B

    公开(公告)日:2017-04-12

    申请号:CN201410125840.0

    申请日:2014-03-31

    Abstract: 本发明涉及一种用于大数据环境下可支持多格式特性的数据空间检索方法。本发明包括:用户输入查询内容;判断用户查询类型;采用前缀扫描方式读取所建立的多级索引;进行链表合并操作;重写查询;遍历多级索引;将逆序压入栈中;首先弹出栈顶中两个元素;读取所建立的多级索引;根据索引链表右连接方案;弹出栈顶元素;输出满足条件的所有元素。本发明的方法由B‑树索引和二级索引共同构成多级索引,能够解决主索引在大数据环境下,路径查询索引连接代价过大的问题。

    基于上下文感知和复杂语义关联的数据空间建模方法

    公开(公告)号:CN106021297A

    公开(公告)日:2016-10-12

    申请号:CN201610289513.8

    申请日:2016-05-04

    CPC classification number: G06F17/30908

    Abstract: 基于上下文感知和复杂语义关联的数据空间建模方法,本发明涉及数据空间建模方法。本发明的目的是为了解决现有方法存在以下缺陷:1)上下文感知性较弱;2)语义关系表达能力弱;3)语义关联推理能力弱。通过以下技术方案实现的:步骤一、构建一种半结构化图模型,称之为上下文感知的复杂语义关联网络模型COSAN;步骤二、根据上下文感知的复杂语义关联网络模型COSAN表示上下文感知的解释对象;步骤三、根据上下文感知的解释对象得出上下文感知的基本语义关联和复杂多元语义关联;步骤四、根据上下文感知的基本语义关联和复杂多元语义关联得出语义关联推理规则。本发明应用于数据空间建模领域。

    路网中面向集合的空间关键词查询方法

    公开(公告)号:CN105868336A

    公开(公告)日:2016-08-17

    申请号:CN201610182802.8

    申请日:2016-03-28

    Abstract: 路网中面向集合的空间关键词查询方法,属于空间关键词查询技术领域。本发明的提出是为了实现对于用户的提出的空间关键词查询能够快速返回多条最佳路线供用户选择。技术要点:本发明所提出的路网中面向集合受查询方向约束的空间关键词查询给出了两种情况,即面向无主关键词的查询和主关键词优先的查询。无主关键词的查询即从查询点出发按照道路网在可查询范围内扩展查询。主关键词优先的查询,首先在可查询范围内以一种迭代替换的方式进行扩展查询直到查询到主关键词对象,若还有关键词没有被已查询到的空间对象所覆盖,则以面向无主关键词的查询方式继续进行扩展查询。分别对以上两种查询进行了实验,证明了所提方法的有效性。

    一种基于环形扩散事件及移动锚节点的定位算法

    公开(公告)号:CN105228099A

    公开(公告)日:2016-01-06

    申请号:CN201510523105.X

    申请日:2015-08-24

    CPC classification number: H04W64/006

    Abstract: 本发明涉及一种基于环形扩散事件及移动锚节点的定位算法。本发明包括:在一个无线传感器网络中,无线传感器网络区域为圆形区域且大小已知,设为S,则半径为计算单轮事件数RankEvents和最小锚距离MinAnchorDst;进行一个轮次的定位,总共产生RankEvents个事件,每个事件以环形向外扩散,对于同一事件,根据感知到事件的先后顺序排列所有节点得到一个节点序列,节点序列中同时包含锚节点和未知节点。LADEMA算法相对于原始LADE算法引入了移动锚节点的思想,付出了一定的外部代价,换取了更高的定位效率和定位精度,总体而言性能更优。

    一种基于分簇的无线传感器网络移动锚节点定位算法

    公开(公告)号:CN105163280A

    公开(公告)日:2015-12-16

    申请号:CN201510522234.7

    申请日:2015-08-24

    CPC classification number: H04W4/02 H04W64/00 H04W84/18

    Abstract: 本发明涉及一种基于分簇的无线传感器网络移动锚节点定位算法。本发明包括:确定网络区域中的簇头节点,选择通信范围内含未知节点最多的点为簇头并将整个簇进行标记,除去标记节点继续按上述要求选择簇头,直到所有节点都被标记;锚节点选择有最多待定未知节点的簇的簇首位置作为初始位置,准备按规划好的路径策略进行移动。本发明有效且低成本得解决了锚节点共线问题。传统移动模型在定位时需要借助雷达等外设或者增加一些信号接收阵列装置来解决此问题,而本算法在具有较多节点的簇内的移动路径为以簇首为中心的正六边形,大大减小了未知节点收到三个共线的位置信息的可能性。

    一种考虑深度学习模型健壮性的水下目标分类的方法

    公开(公告)号:CN114565831B

    公开(公告)日:2025-02-25

    申请号:CN202210202911.7

    申请日:2022-03-02

    Abstract: 一种考虑深度学习模型健壮性的水下目标分类的方法,本发明为了解决现有深度学习模型对水下目标分类准确率低的问题,它包括利用训练好的原始模型对采集的水下目标数据训练集进行预测得到所有分类正确样本的集合和所有分类错误样本的集合;将所有分类错误样本的集合输入训练好的原始模型内,对分类错误样本的特征进行聚类和特征补偿,得到分类错误样本的特征补偿;将特征补偿输入训练好的原始模型内得到特征补偿后的原始模型;将水下目标数据训练集输入特征补偿后的原始模型内,输出分类错误的样本;建立对抗训练模型,得到训练好的对抗训练模型;将对抗训练模型与特征补偿后的原始模型加权组合生成深度学习模型;属于水下目标分类领域。

    基于互信息增强的自监督新颖性检测方法

    公开(公告)号:CN113592016B

    公开(公告)日:2023-12-01

    申请号:CN202110908117.X

    申请日:2021-08-09

    Abstract: 基于互信息增强的自监督新颖性检测方法,涉及图像处理领域。本发明是为了解决现有图像新颖性检测方法的重构效果不佳,难以对类内外图像边界进行区分,进而导致在复杂场景中检测效果差的问题。本发明具体过程为:将待检测的图像输入到训练好的自监督新颖性检测模型的自编码网络中进行新颖性检测,获得检测结果。所述自监督新颖性检测模型包括:自编码网络、隐鉴别器、鉴别器、分类器;自编码网络包括:生成器和编码器,用于对输入的待检测图像数据进行重构;所述隐鉴别器用于与编码器进行对抗训练;所述鉴别器用于与生成器进行对抗训练;分类器用于对生成器生成的图像进行分类。本发明用于对图像的新颖性进行检测。

    一种数值水池应用特征性能采集和监控系统及其运行方法

    公开(公告)号:CN110990227B

    公开(公告)日:2023-08-04

    申请号:CN201911228522.6

    申请日:2019-12-04

    Abstract: 本发明公开了一种数值水池应用特征性能采集和监控系统及其运行方法。所述系统包括数值水池应用特征性能采集和监控系统(100)、应用性能基准线管理模块(101)和应用性能分析报告模块(102),所述应用性能基准线管理模块(101)和应用性能分析报告模块(102)均将信号传输至数值水池应用特征性能采集和监控系统(100)。本发明统计除监测每次虚拟试验的性能数据之外,同时采集每个作业的执行次数和累计耗费时间,它主要反映的是不同过程运行的时间、各种不同类型的通信花费的时间及执行次数和各处理器节点运行的时间等。

    一种基于语义增强的标题短文本分类方法

    公开(公告)号:CN111460147B

    公开(公告)日:2023-06-23

    申请号:CN202010214338.2

    申请日:2020-03-24

    Abstract: 一种基于语义增强的标题短文本分类方法,它属于文本分类技术领域。本发明解决了现有方法对情报数据挖掘中的标题短文本分类的精确度低的问题。本发明对采集的标题短文本以及标题短文本对应的文章内容进行预处理后,将预处理后的文章内容作为样本数据的扩充语料,另外还通过特征检索的方式获得了标题短文本的扩充语料,并且利用验证集对模型参数寻优时获得的优质数据集对训练集进行更新,即本发明对标题短文本进行了CSE编码语义增强和ASE自主语义增强,通过语义增强技术对标题短文本进行分类,可以有效提高FastText分类器在短文本分类上的精确度,分类精度将有近30%的大幅度提升。本发明可以应用于短文本分类。

Patent Agency Ranking