Abstract:
본 발명은 마그네슘 전지용 전해액, 이의 제조 방법 및 이를 포함하는 마그네슘 전지에 관한 것이다. 본 발명에 의한 마그네슘 전지용 전해액은 전해액 내에 구리 이온을 포함하고, 상기 구리 이온이 마그네슘의 삽입, 탈리 반응시 마그네슘 이온과 상호 작용을 함으로써 마그네슘 이온의 가역성을 향상시키고, 마그네슘 전지의 에너지 밀도를 크게 증가시키는 효과를 나타낸다.
Abstract:
본 발명은 레독스 플로우 이차 전지에 관한 것이다. 이러한 본 발명은 다공성 금속으로 형성되고, 상기 다공성 금속의 표면에 카본이 코팅되어 형성되는 한 쌍의 전극을 포함하는 단위 셀을 포함한다. 이러한 본 발명에 따르면, 탄소가 균일하게 코팅된 다공성 금속 전극을 사용하는 레독스 플로우 이차전지를 제공함으로써, 전극의 전도성이 향상되며, 또한, 표면에 비표면적이 넓은 탄소층을 균일하게 코팅함으로써, 반응성을 향상 시킬 수 있다. 결과적으로 레독스 플로우 이차전지의 용량 및 에너지 효율을 향상 시킬 수 있으며 셀의 저항을 효과적으로 감소시킬 수 있다. 게다가, 전극에 탄소층을 균일하게 코팅함으로써, 부식 저항성 또한 개선시킬 수 있다.
Abstract:
본 발명은 음극 활물질, 그를 갖는 비수계 리튬이차전지 및 그의 제조 방법에 관한 것으로, 전해질 첨가제를 사용하지 않고 탄소계 재료의 표면을 개질하며 표면의 반응성 및 구조적 안정성을 향상시켜 비수계 리튬이차전지의 음극 활물질로 적용 시 충방전 효율 및 고율 특성의 열화 없이 장수명 특성을 확보할 수 있고, 고온 저장 특성 및 저온 특성을 향상시키기 위한 것이다. 본 발명에 따른 음극 활물질은 탄소계 재료와, 상기 탄소계 재료의 표면에 형성된 인(P) 또는 붕소(B)의 코팅층을 포함한다. 이때 코팅층은 인산(H 3 PO 4 ) 또는 붕산(H 3 BO 3 ) 처리를 통하여 인(P) 또는 상기 붕소(B)의 화합물을 포함한다.
Abstract translation:本发明涉及一种负极活性物质,包含该负极活性物质的非水锂二次电池及其制备方法,其中,碳基材料的表面被改性而不使用电解质添加剂,并且表面的反应性和结构稳定性 而且,作为非水系锂二次电池的负极活性物质,当作为碳系材料时,能够确保寿命特性而不会使充放电效率恶化,高速率特性,提高高温保存特性和低温特性。 根据本发明,阳极活性材料包括碳基材料; 以及形成在碳系材料的表面上的含磷(P)或硼(B)的涂层,其中,所述涂层通过用磷酸(H 3 PO 4)处理或磷酸(H 3 PO 4)或 硼酸(H3BO3)。
Abstract:
PURPOSE: A flow secondary battery has high energy storage density, high capacity, and high efficiency. CONSTITUTION: A flow secondary battery includes an ion separation film and a positive electrode and a negative electrode (21,23) each of which is arranged on both sides of the ion separation film. Electrolyte solution is supplied to each of the positive and negative electrode. As a catholyte, polysulfide solution is supplied. The catholyte is manufactured by mixing Li2S and sulfur into LiTFSI(Lithium bistrifluoromethanesulfonimide) TEGDME : DOXL (1 : 1) electrolyte solution. An anolyte of the electrolyte solution is LiTFSI(Lithium bistrifluoromethanesulfonimide) TEGDME : DOXL (1 : 1) electrolyte solution. [Reference numerals] (AA) Discharge; (BB) Charge
Abstract:
PURPOSE: Anodal active material and a lithium secondary battery having the same are provided to enhance structural stability and reactivity of the surface and to have long life time without deterioration of high-rates. CONSTITUTION: Anodal active material for a non-aqueous based lithium secondary battery has carbon-containing material and a coating layer with heat-treated surface of the carbon-containing material by using ammonia based compound. Ammonia of ammonia based compound is removed by thermal processing and other inorganic material forms the coating layer on carbon-containing material. A manufacturing method of the anodal active material for the non-aqueous based lithium secondary battery comprises the steps of: preparing the carbon-containing material and ammonia based compound and producing the coating layer on the surface of the carbon-containing material by using ammonia based compound. [Reference numerals] (AA) Start; (BB) End; (S11) Preparing carbon-containing material and ammonia based compound; (S13) Forming aqueous solution by resolving carbon-containing material and ammonia based compound in water; (S15) Evenly mixing carbon-containing material and ammonia based compound in the aqueous solution; (S17) Vacuum drying; (S19) Producing the coating layer on the surface of the carbon-containing material by using ammonia based compound
Abstract:
PURPOSE: A micro encapsulated extinguishing composition is provided to control emission temperature of the extinguishing composition and to stop overcharging and malfunction of a lithium secondary battery during heating due to overcharging and malfunction of the lithium secondary battery. CONSTITUTION: A micro encapsulated extinguishing composition(10) comprises an extinguishing composition(14) and a thermoplastic resin layer(12) formed on the outside of the extinguishing composition. The thermoplastic resin layer is formed of a thermoplastic single polymer or copolymer. The single polymer is formed by polymerization of one monomer. The copolymer is formed by polymerization of two or more monomers. The monomer comprises an ethylene group. The extinguishing composition contains one or two hydrogen atoms and a fluorinated ketone compound with a boiling point of 0-150 °C.
Abstract:
PURPOSE: A manufacturing method of a carbon-felt electrode surface-modified by metal oxide capable of increasing energy efficiency of a redox-flow secondary battery and to reduce treatment time of surface of a carbon felt. CONSTITUTION: A manufacturing method of a surface-modified carbon-felt electrode comprises: a step(S10) of inserting a carbon felt, metal acetate and water into an autoclave; a step(S20) of operating the autoclave by setting the temperature and operation time of the autoclave; and a step(S30) of obtaining a carbon felt surface-modified by metal oxide after the operation time in set-temperature condition of the autoclave. The carbon felt is one of a polyacrylonitrile-based or a rayon-based. [Reference numerals] (S10) Step of inserting a carbon felt, metal acetate and water into an autoclave; (S20) Step of operating the autoclave by setting the temperature and operation time of the autoclave; (S30) Step of obtaining a carbon felt surface-modified by metal oxide after the operation time in set-temperature condition of the autoclave
Abstract:
PURPOSE: An anodic active material for a lithium ion capacitor and a manufacturing method thereof are provided to electrochemically dope lithium to a carbon group cathode active material by adding an anode additive to a carbon group material. CONSTITUTION: An anodic active material for a lithium ion capacitor comprises a lithium compound metal oxide and a carbon group material marked as a predetermined chemical formula. Initial charge and discharge efficiency of the lithium compound metal oxide is less than 50%. The lithium compound metal oxide is the anodic active material for the lithium ion capacitor which is selected in a group consisting of Li2MoO3, Li2PtO3, and Li2IrO3. The lithium compound metal oxide has a rhombohedral crystalline structure. In the lithium compound metal oxide reversibly inserts a lithium ion in a voltage region of 0V-5V.