Abstract:
PURPOSE: A manufacturing method of a high density fiber-reinforced ceramic composite is provided to manufacture a matrix structure ceramic composite in short time without using an expensive device. CONSTITUTION: A manufacturing method of a high density fiber-reinforced ceramic composite comprises the following steps: dipping a fiber molded product into phenol resin slurry which is mixed with a filler component; carbonizing the dipped fiber molded product; primary react-sintering the fiber molded product by heat treating the carbonized fiber molded products under vacuum atmosphere; dipping the cooled fiber molded product into a polymer precursor for SiC production after cooling the fiber molded product down to room temperature; and secondary react-sintering the fiber molded product by filling metal silicon powder in the surface of the fiber molded product and fusing under the vacuum condition. [Reference numerals] (AA) Composite of a comparative embodiment 1; (BB) Composite of an embodiment 1; (CC) Composite of an embodiment 3; (DD) Composite of an embodiment 4
Abstract:
PURPOSE: A current collector for fuel cell is provided to improve operational efficiency, lowers fabrication cost, and lightens weight of the fuel battery. CONSTITUTION: A current collector for a fuel battery comprises conductive material and silicon carbide. The conductive material locates inside the silicon carbide. The current collector has a structure of core-shell which silicon carbide covers the conductive material. The conductive material includes one or two kinds selected from a group including copper(Cu), nickel(Ni), gold(Au), platinum(Pt), palladium(Pd), ruthenium(Ru), iridium(Ir), silicon(Si), and carbon. The conductive material and silicon carbide are included in weight ratio of 1:9-9:1.
Abstract:
다수 개의 열전환 발전 셀을 포함하는 열전환 발전기는 다수 개의 열전환 발전 셀, 다수 개의 열전환 발전 셀를 위치시킬 수 있는 케이스, 케이스 상단부에 위치하여 상기 다수 개의 열전환 발전 셀을 통과한 작동 유체를 포집하여 응축하는 응축부, 케이스 하단부에 위치하여 작동 유체에 열을 전달하여 증기로 변환시키고 다수 개의 열전환 발전 셀로 작동 유체 증기를 이송하는 증발부, 응축부와 접해 있는 케이스 외부의 상단면 제외 나머지 면에 위치하며, 열유체를 통과시키는 열교환기, 응축부와 상기 증발부의 공간을 연결하여 작동유체가 이송할 수 있는 순환부, 증발부와 다수 개의 열전환 발전 셀 사이를 접합하는 접합부를 포함하는 구성을 통해 온도 구배가 없고 열유체가 열교환기를 통해 시스템 온도를 높인 후 순환하는 방식으로 재활용 가능하기 때문에 효율이 매우 높은 시스템 구성이 가능하다. 또한, 기존의 시스템과는 달리 시스템 내에 온도 구배가 거의 없기 때문에 열충격이 매우 작고 암텍(AMTEC) 을 구성하는 셀 성능이 일정하게 유지될 수 있는 장점이 있다. 이와 함께, 시스템과 냉각부의 온도차이가 커서 응축이 냉각부에만 효율적으로 이루어지기 때문에 Na 등의 작동 유체의 순환이 원활하게 이루어질 수 있는 장점이 있다. 이를 통해, 시스템 효율 극대화시킬 수 있으며 마지막으로 열교환기는 열유체 입구 및 출구만이 필요한 컴팩트 형태로 모듈 구성이 용이하다.
Abstract:
Produced is a material capable of producing an electrode having excellent performance and durability by suppressing the particle growth of a metal electrode particle at a high temperature while maintaining high electrical conductivity by using composite materials as an electrode after mixing the composite materials by using a ceramic material and Mo which is a metal electrode material. To achieve this, a step of making a Mo organic complex mixed with ceramic slurry through multiple heat processing steps and a step of making composite powder including ceramic and Mo through a petrifaction processing step are included. The electrode, produced by using the composite powder including ceramic and Mo which are the composite materials produced by the present invention, indicates excellent electrical conductivity at a high temperature which is an advantage of an Mo type metal electrode while suppressing particle growth at a high temperature which is an advantage of a ceramic type electrode so that there is not performance degradation at a high temperature. Moreover, as a problem, that delamination occurs due to ceramic (electrolyte)-metal (electrode) sintering which is a problem of sintering after forming an existing electrode in beta-alumina solid electrolyte (BASE), is improved to indicate an intermediate property of metal and ceramic so that interfacial bonding is improved.
Abstract:
본원은 기체분리용 전극지지형 단락 분리막 모듈 및 이를 이용한 기체분리 공정을 제공한다. 본원의 기체분리용 전극지지형 단락 분리막 모듈은 화학적으로 안정되고 이온 투과율 특성을 높이기 위해, 이온전도성 전해질 사이에 연결재(interconnection(dense))를 삽입하여 전류 경로(current path)를 짧게 함으로써 대면적 제조시에도 높은 투과도를 유지함으로써, 기체분리 효율을 극대화한다.