Abstract:
A display that contains a column spacer arrangement which takes advantage of a protrusion on a TFT substrate is provided. One set of column spacers is disposed on top of the protrusion, while a second set of column spacers of substantially the same height as the first set of column spacers are disposed throughout the display. In this way, the display is adequately protected against deformation from external forces while at the same maintaining enough room to allow for a liquid crystal to spread out during the manufacturing process.
Abstract:
Systems, methods, and devices for column inversion are provided. In one example, an electronic display may include a display panel having columns of pixels and display driver circuitry. The display driver circuitry may include source amplifiers and demultiplexers. Each demultiplexer may channel data output by at least one source amplifier to one of three columns of pixels. The display driver circuitry may drive the display panel according to a 3-column inversion scheme using one source amplifier per demultiplexer per frame of image data.
Abstract:
When a user operates a touch sensor panel having an LCD device outdoors or in a bright environment, light reflecting off the device can create glare. In order to reduce glare, a user can view the device through polarized filters such as polarized sunglasses. Doing so can reduce the visibility of the image displayed on the LCD. A quarter-wave retardation film can be added to the touch sensor panel's LCD device to mitigate these effects by producing circularly polarized light. However, adding a separate quarter-wave retardation film can increase the thickness and cost of manufacturing the touch sensor panel. Examples of the present disclosure are directed to a touch sensor panel constructed from a base film having quarter-wave retardation properties that can produce circularly polarized light. Because the base film has the desired optical properties, a separate quarter-wave retardation film may not be needed.