Abstract:
Various radio resource management techniques may be implemented to reduce in-device coexistence issues and/or interference between a Uu link established between a mobile device (first UE) and a base station (first NB), and a sidelink/PC5 link established between the first UE and another mobile device (second UE), where the second UE is served by a different base station (second NB). The first UE may receive, from the first NB, measurement configuration information that enables/configures the first UE to report to the NB any indication(s) of issues caused by communications between the first UE and the second UE over the PC5 link affecting communications between the first UE and the first NB over the Uu link, and/or communications over the Uu link affecting communications over the PC5 link. The first NB may analyze the feedback from the first UE and may implement mitigation measures to reduce/eliminate any interference and/or in-device-coexistence issues.
Abstract:
This disclosure relates to techniques for efficiently handling connection rejections. A wireless device may detect barring conditions in response to receiving one or more connection rejections. The wireless device may bar one or more connections based on the barring conditions, and may attempt to access network services over one or more other connections.
Abstract:
This disclosure relates to techniques for handling voice and data under uplink limited conditions in a wireless communication system. A wireless device and a base station may establish a wireless communication link. Transmission time interval bundling (TTI-B) may be enabled for uplink communications between the wireless device and the base station. It may be determined that the wireless device is experiencing uplink limited conditions. One or more rules prioritizing a first type of data over a second type of data for uplink communications may be enabled based on TTI-B being enabled and the wireless device experiencing uplink limited conditions.
Abstract:
Generating and using a device-type specific preferred public land mobile network (PLMN) list for roaming PLMN selection. Wireless devices sharing one or more common characteristics may be tasked with collecting roaming PLMN selection data. That data may be collected and used to generate a preferred PLMN list specific to wireless devices sharing those common characteristics. The preferred PLMN list may be distributed to wireless devices sharing those common characteristics, which may then use it in conjunction with roaming PLMN selection.
Abstract:
A wireless communication system is presented in which user equipment (UE) performs non-intra-frequency (NIF) cell reselection. The NIF cell reselection process can: detect, on a discontinues reception (DRX) cycle, whether a NIF for a second cell has passed a second reselection threshold; perform, on the DRX cycle, additional checks or measurements to determine whether a higher priority NIF for a third cell has passed a third reselection threshold; and continue a cell reselection process for the second cell and the third cell. The NIF cell reselection techniques can help ensure that the UE reselects to higher priority cells without expending an unnecessary amount power.
Abstract:
Performing cell re-selection by a device. A first cell on which to camp may be selected. The device may camp on the first cell in an idle-mode. The device may be configured to perform searches for neighboring cells according to an idle-mode timeline while camping on the first cell. The device may transmit a connection request to the first cell in order to transition the device from the idle-mode to a connected-mode via the first cell. One or more searches for neighboring cells may be performed according to a connected-mode timeline after transmitting the connection request, in response to transmitting the connection request. The one or more searches may be performed before the device establishes the connected-mode with the first cell.
Abstract:
A method for radio link control in a mobile wireless communication device. The mobile wireless device transmits a sequence of service requests to establish radio resources with a wireless communication network for a data packet in a pending data buffer. When no radio resources are allocated in response to the transmitted sequence of service requests, the mobile wireless device sets a minimum threshold for the pending data buffer, discards all pending data packets above the minimum threshold and discards the oldest pending data packet. The mobile wireless device repeats transmitting and discarding until a radio resource is allocated or the pending data packet buffer is empty. A retry interval between successive service requests is increased after transmitting each sequence of service requests until reaching a maximum retry interval value.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
Adjusting search and measurement periodicity based on device motion. A wireless device may camp on a serving cell. Signal strength, signal quality, and signal to noise ratio of the serving cell may be measured. If each is above a respective threshold, and if the wireless device is stationary, the periodicities at which searches and neighbor cell measurements are performed may be adjusted (e.g., increased) from baseline periodicities.
Abstract:
Methods and apparatus for the automated altering of wireless device states in response to detected connection behaviors. In one embodiment, a mobile device receives network parameters, some of which are incorrectly configured, from a base station (or access point). To ensure the proper behavior of the mobile device, the device reviews the network provided parameters to determine if one or more of the parameters has been set incorrectly. If so, the device locally alters its own settings to mitigate the incorrect operation associated with the incorrect network provided parameters. In second exemplary embodiment, a number of tolerances are utilized to ensure the proper operation of the mobile device while maintaining an active link. Upon violation of one or more of these tolerances, the device breaks the active link to the wireless network.