Abstract:
Component microfluidic devices which are integrated with polydimethylsiloxane (PDMS) microfluidic chips, include designs for an electrical and optical pressure gauge, valve, electrostatic and magnetic pumps, alternating or mixing pumps, a solenoid, a magnetometer, a magnetically actuated reversible filter and valve, and a hydrolysis valve. These devices enhance and miniaturize microfluidic control, thereby expanding the available capabilities and allowing complete system miniaturization for handheld diagnostic apparatuses.
Abstract:
An integrated plasmon detector includes a top layer of material adapted to generate a plasmon when excited by a beam of light incident onto a surface of the top layer, an interface layer joined to the top layer opposite from the surface of the top layer and adapted to slow polarons emitted by the plasmon to thermal electrons, and a collector layer joined to the interface layer opposite from the top layer and adapted to collect the thermal electrons from the interface layer.
Abstract:
Systems and methods for manipulating light with high index contrast waveguides clad with substances having that exhibit large nonlinear electro-optic constants χ2 and χ3. Waveguides fabricated on SOI wafers and clad with electro-optic polymers are described. Embodiments of waveguides having slots, electrical contacts, and input waveguide couplers are discussed. Waveguides having closed loop structures (such as rings and ovals) as well as linear or serpentine waveguides, are described. Optical signal processing methods, such as optical rectification and optical modulation, are disclosed. Designs having responsivity of less than 1 volt-centimeter are described.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A device and method for making a microfluidic separation device. A microfluidic separation device could include a microfluidic column having an inlet, the microfluidic column being configured to hold a first fluid and the microfluidic column including a porous portion, and an outlet attached to the microfluidic column, the outlet being configured to output a second fluid. The method may include providing a microfluidic column having an inlet, configuring the microfluidic column to hold a first fluid, forming a porous portion in the microfluidic column, and attaching an outlet to the microfluidic column.
Abstract:
In a fluidic device with a storage compartment communication is allowed between the storage compartment and other portions of the device. The communication is controlled through a valve arrangement and a membrane covering the compartment. The valve arrangement can be provided through a sealing clamp with clamp fingers. The clamp fingers control communication between the storage compartment and remaining portions of the fluidic device.
Abstract:
A microfluidic assembly comprising a replaceable microfluidic circuit and a thermal unit, the microfluidic circuit adapted to contact the thermal unit by contact between one or more membranes in the microfluidic circuit and the at least one temperature controlling element in the thermal unit to achieve temperature control of a substance or substances inside one or more fluidic compartments in the microfluidic circuit. A related method to control temperature and/or physical state of a substance in the fluidic compartments and related testing systems are also described.
Abstract:
The invention is a photonic crystal laser including a photonic crystal slab laser cavity including InGaP/InGaAlP crystalline layers, the InGaP/InGaAlP crystalline layers having a relaxed strain at one or more etched surfaces and a higher strain at a plurality of quantum wells and at a distance from the one or more etched surfaces. The photonic crystal laser also includes electrical pads configured to receive an electrical signal the electrical pads attached to the photonic crystal slab laser cavity via an insulating layer, the photonic crystal laser configured to emit a laser light in response to the electrical signal. In another aspect, the invention features a photonic crystal detector including a photonic crystal slab cavity including InGaP/InGaAlP crystalline layers. In yet another aspect, the invention features a process to fabricate a photonic crystal laser cavity.
Abstract:
An apparatus for analysis of a sample and in particular of a biological sample. The apparatus contains a microfluidic chip with dies, adapted to be selectively activated or deactivated by presence of target molecules in the biological sample. The apparatus further contains a light source to emit light for illumination of the microfluidic chip and an optical filter to allow passage of the light from the dies once activated or deactivated by the presence of the target molecules. A method for pressurizing a microfluidic chip is also disclosed, where a chamber is provided, the chamber is connected with the microfluidic chip and pressure is applied to the chamber.
Abstract:
This invention provides a system for performing PCR, and real time PCR in particular with great speed and specificity. The system employs a heat block containing a liquid composition to rapidly transfer heat to and from reaction vessels. The system makes use of the reflective properties of the liquid metal to reflect signal from the PCR into the vessel and out the top. In this way, the signal can be measured by an optical assembly in real time without removing the vessels from the heat block.