Abstract:
Embodiments of durable, anti-reflective articles are described. In one or more embodiments, the article includes a substrate and an optical coating disposed on the major surface. The optical coating includes an anti-reflective coating and a scratch-resistant coating forming an anti-reflective surface. The article exhibits a maximum hardness of 12 GPa or greater, as measured on the anti-reflective surface by a a Berkovich Indenter Hardness Test along an indentation depth of about 100 nm or greater. The articles of some embodiments exhibit a single side average light reflectance measured at the anti-reflective surface of about 8% or less over an optical wavelength regime in the range from about 400 nm to about 800 nm and a reference point color shift in transmittance or reflectance of less than about 2. In some embodiments, the article exhibits an angular color shift of about 5 or less at all angles from normal incidence to an incident illumination angle that is 20 degrees or greater.
Abstract:
Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a reflection or transmission color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 20 degrees to about 60 degrees from normal under an illuminant and hardness of at least 14 GPa at an indentation depth of at least 100 nm from the surface of the article. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and an optical interference layer. The optical interference layer may include one or more sub-layers that exhibit different refractive indices. In one example, the optical interference layer includes a first low refractive index sub-layer, a second a second high refractive index sub-layer, and an optional third sub-layer.
Abstract:
Methods and apparatus provide for: a glass substrate having a first strain to failure characteristic, a first elastic modulus characteristic, and a flexural strength; and a coating applied over the glass substrate to produce a composite structure in order to increase a hardness thereof, where the coating has a second strain to failure characteristic and a second elastic modulus characteristic, where the first strain to failure characteristic is higher than the second strain to failure characteristic, and one of: (i) the first elastic modulus characteristic is above a minimum predetermined threshold such that any reduction of the flexural strength of the glass substrate resulting from application of the coating is mitigated; and (ii) the first elastic modulus characteristic is below a maximum predetermined threshold such that any reduction of the strain to failure of the glass substrate resulting from application of the coating is mitigated.
Abstract:
One or more aspects of the disclosure pertain to an article including an optical film structure disposed on an inorganic oxide substrate, which may include a strengthened or non-strengthened substrate that may be amorphous or crystalline, such that the article exhibits scratch resistance and retains the same or improved optical properties as the inorganic oxide substrate, without the optical film structure disposed thereon. In one or more embodiments, the article exhibits an average transmittance of 85% or more, over the visible spectrum (e.g., 380 nm-780 nm). Embodiments of the optical film structure include aluminum-containing oxides, aluminum-containing oxy-nitrides, aluminum-containing nitrides (e.g., AlN) and combinations thereof. The optical film structures disclosed herein also include a transparent dielectric including oxides such as silicon oxide, germanium oxide, aluminum oxide and a combination thereof. Methods of forming such articles are also provided.
Abstract:
A glass laminate structure comprising an external glass sheet and an internal glass sheet wherein one or both of the glass sheets comprises SiO2+B2O3+Al2O3≧86.5 mol. %. and R2O—RO—Al2O3
Abstract translation:一种玻璃层压结构,其包括外部玻璃板和内部玻璃板,其中一个或两个所述玻璃板包括SiO 2 + B 2 O 3 + Al 2 O 3≥86.5mol。 %。 和R2O-RO-Al2O3 <约5mol。 %。 示例性玻璃板可以包含约69-80mol。 %SiO 2,约6-12mol。 %Al 2 O 3,约2-10mol。 %B 2 O 3,约0-5mol。 %ZrO 2,Li 2 O,MgO,ZnO和P 2 O 5,约6-15mol。 %Na 2 O,约0-3mol。 %K2O和CaO,以及约0-2mol之间。 %SnO2,提供机械坚固耐用的结构。
Abstract:
A glass-based assembly includes a glass or glass-ceramic substrate comprising a surface. The surface has flaws, such as a population of small cracks extending into the surface, whereby the substrate is weakened relative to ideal strength thereof. The assembly further includes a coating coupled to the substrate and overlaying at least some of the flaws. Ultimate strength of the substrate with the coating coupled thereto is greater than that of the substrate alone, without the coating.
Abstract:
A textured article is described herein comprising a substrate comprising a textured region defined on a primary surface of the substrate, in which the textured region comprises (a) a Vmp/Sq of at least 0.084, (b) a Vmp/Sq of at least 0.084 and an Smrk2 of at least 90%, and/or (c) a Vmp of at least 10 nm and an Sdq of 0-0.1. The textured article generally has good abrasion resistance and optical properties including antiglare, haze, sparkle, and distinctness of image. A method for making a textured article is also described herein comprising removing a first portion of a primary surface of a substrate through holes penetrating through a stop layer to the primary surface to form seed depressions and unremoved portions, removing the stop layer, and then removing a second portion of the primary surface comprising the seed depressions and the unremoved portions.
Abstract:
A glass-based assembly includes a glass substrate and a coating layer coupled to the glass substrate. Ultimate strength of the glass substrate with the coating layer overlaying and coupled thereto is greater than that of the glass substrate alone, without the coating layer.
Abstract:
Durable and scratch resistant articles including low-reflectance optical coating with gradient portion. In some embodiments, an article comprises: a substrate comprising a first major surface; and an optical coating disposed over the first major surface. The optical coating comprises: a second major surface; a thickness; and a first gradient portion. A refractive index of the optical coating varies along a thickness of the optical coating. The difference between the maximum refractive index of the first gradient portion and the minimum refractive index of the first gradient portion is 0.05 or greater. The absolute value of the slope of the refractive index of the first gradient portion is 0.1/nm or less everywhere along the thickness of the first gradient portion. The article exhibits a single side photopic average light reflectance of 3% or less, and a maximum hardness from 10 GPa to 30 GPa.
Abstract:
A display article is described herein that includes: a substrate comprising a thickness and a primary surface; a textured surface region; and an antireflective coating disposed on the textured surface region. The textured surface region comprises structural features and an average texture height (Rtext) from 50 nm to 300 nm. The substrate exhibits a sparkle of less than 5%, as measured by PPD140, and a transmittance haze of less than 40%, at a 0° incident angle. The antireflective coating comprises alternating high refractive index and low refractive index layers. Each of the low index layers comprises a refractive index of less than or equal to 1.8, and each of the high index layers comprises a refractive index of greater than 1.8. The article also exhibits a first-surface average photopic specular reflectance (% R) of less than 0.3% at any incident angle from about 5° to 20° from normal at visible wavelengths.