-
71.
公开(公告)号:US20230394616A1
公开(公告)日:2023-12-07
申请号:US18334733
申请日:2023-06-14
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
IPC: G06T1/20 , G06N3/063 , G06F9/38 , G06F9/30 , G06N3/084 , G06N3/044 , G06N3/045 , G06N3/04 , G06N3/08
CPC classification number: G06T1/20 , G06N3/063 , G06F9/3887 , G06F9/3895 , G06F9/3001 , G06F9/3851 , G06F9/3017 , G06N3/084 , G06N3/044 , G06N3/045 , G06N3/04 , G06N3/08
Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
-
公开(公告)号:US11748606B2
公开(公告)日:2023-09-05
申请号:US17317857
申请日:2021-05-11
Applicant: INTEL CORPORATION
Inventor: Kamal Sinha , Balaji Vembu , Eriko Nurvitadhi , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Farshad Akhbari , Narayan Srinivasa , Feng Chen , Dukhwan Kim , Nadathur Rajagopalan Satish , John C. Weast , Mike B. MacPherson , Linda L. Hurd , Vasanth Ranganathan , Sanjeev S. Jahagirdar
IPC: G06F7/50 , G06N3/063 , G06N3/08 , G06N3/04 , G06T1/20 , G06F9/30 , G06T15/00 , G06F15/78 , G06F15/76 , G06F1/3287 , G06F1/3293 , G06N3/084 , G06N3/044 , G06N3/045 , G06T1/60
CPC classification number: G06N3/063 , G06F1/3287 , G06F1/3293 , G06F9/30014 , G06F9/30036 , G06F15/76 , G06F15/78 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06T1/20 , G06T15/005 , G06T1/60
Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US20220261948A1
公开(公告)日:2022-08-18
申请号:US17684187
申请日:2022-03-01
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , Linda L. Hurd , Dukhwan Kim , Mike B. Macpherson , John C. Weast , Feng Chen , Farshad Akhbari , Narayan Srinivasa , Nadathur Rajagopalan Satish , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman
IPC: G06T1/20 , G06F3/14 , G06F9/30 , G06F9/38 , G06N3/04 , G06N3/063 , G06N3/08 , G06T15/00 , G09G5/36
Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core including mixed-precision execution circuitry to execute one or more of the mixed-precision instructions to perform a mixed-precision dot-product operation comprising to perform a set of multiply and accumulate operations.
-
公开(公告)号:US11379235B2
公开(公告)日:2022-07-05
申请号:US17128972
申请日:2020-12-21
Applicant: Intel Corporation
Inventor: Feng Chen , Narayan Srinivasa , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Joydeep Ray , Nicolas C. Galoppo Von Borries , Prasoonkumar Surti , Ben J. Ashbaugh , Sanjeev Jahagirdar , Vasanth Ranganathan
Abstract: A mechanism is described for facilitating intelligent dispatching and vectorizing at autonomous machines. A method of embodiments, as described herein, includes detecting a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a graphics processor. The method may further include determining a first set of threads of the plurality of threads that are similar to each other or have adjacent surfaces, and physically clustering the first set of threads close together using a first set of adjacent compute blocks.
-
公开(公告)号:US20220164916A1
公开(公告)日:2022-05-26
申请号:US17541413
申请日:2021-12-03
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex compute operation.
-
公开(公告)号:US10769748B2
公开(公告)日:2020-09-08
申请号:US16197783
申请日:2018-11-21
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
-
公开(公告)号:US10521349B2
公开(公告)日:2019-12-31
申请号:US16277267
申请日:2019-02-15
Applicant: Intel Corporation
Inventor: Chandrasekaran Sakthivel , Prasoonkumar Surti , John C. Weast , Sara S. Baghsorkhi , Justin E. Gottschlich , Abhishek R. Appu , Nicolas C. Galoppo Von Borries , Joydeep Ray , Narayan Srinivasa , Feng Chen , Ben J. Ashbaugh , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Eriko Nurvitadhi , Balaji Vembu , Altug Koker
IPC: G06F12/0837 , G06N3/08 , G06N20/00 , G06T1/20 , G06F12/0815 , G06N3/04 , G06N3/063
Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US10332308B2
公开(公告)日:2019-06-25
申请号:US15525023
申请日:2014-12-08
Applicant: Intel Corporation
Inventor: Feng Chen , Yi Yang , Xiaoming Chen
Abstract: One or more system, apparatus, method, and computer readable media is described below for automated data type precision control capable of improving rendering quality on a graphics processor. Perceptible rendering quality is dependent at least in part on number format precision (e.g., FP16 or FP32) employed for shader program variables. In accordance with embodiments, shader variables implemented in lower precision data formats are tracked during shader compile to identify those that might trigger a floating point overflow and/or underflow exception. For shaders including one or more such variable, resources are provided to automatically monitor overflow and/or underflow exceptions during shader execution. In further embodiments, shader code is automatically re-generated based, at least in part, upon occurrences of such exceptions, and an increased number format precision specified for one or more of the tracked shader variables.
-
79.
公开(公告)号:US20190139182A1
公开(公告)日:2019-05-09
申请号:US16197783
申请日:2018-11-21
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
CPC classification number: G06T1/20 , G06F9/3001 , G06F9/3017 , G06F9/3851 , G06F9/3887 , G06F9/3895 , G06N3/04 , G06N3/0445 , G06N3/0454 , G06N3/063 , G06N3/08 , G06N3/084
Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
-
公开(公告)号:US20180314250A1
公开(公告)日:2018-11-01
申请号:US15581133
申请日:2017-04-28
Applicant: Intel Corporation
Inventor: Brian T. Lewis , Feng Chen , Jeffrey R. Jackson , Justin E. Gottschlich , Rajkishore Barik , Xiaoming Chen , Prasoonkumar Surti , Mike B. Macpherson , Murali Sundaresan
CPC classification number: G06N3/063 , B60W30/095 , G01C21/34 , G06N3/008 , G06N3/0454
Abstract: A mechanism is described for facilitating smart collection of data and smart management of autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and combining a first computation directed to be performed locally at a local computing device with a second computation directed to be performed remotely at a remote computing device in communication with the local computing device over the one or more networks, where the first computation consumes low power, wherein the second computation consumes high power.
-
-
-
-
-
-
-
-
-