Abstract:
Briefly, in accordance with one or more embodiments, a fixed device synchronizes with a downlink channel of a network, acquires a master information block including a last system update time; and executes cell selection without acquiring other system information if the last system update time is before the last system access time. Furthermore, the fixed device may listen only for system information block messages that it needs, and ignore other system information blocks. A bitmap may indicate which system information block messages should be listed to for fixed devices, and which may be ignored. In some embodiments, one or more system information blocks may be designated for fixed devices.
Abstract:
Techniques for random access (RA) in a cellular internet-of-things (CIOT) are discussed. An example apparatus configured to be employed within a User Equipment (UE), comprises a receiver circuitry, a processor, and transmitter circuitry. The receiver circuitry is configured to receive RA resource allocation information via one of a system information message or a downlink control information (DCI) message. The processor is operably coupled to the receiver circuitry and configured to: select a RA preamble sequence; generate a payload; and spread the payload via a spreading sequence. The transmitter circuitry is configured to transmit, based on the RA resource allocation information, a RA message comprising the RA preamble sequence and the payload, wherein the RA message is transmitted in a RA slot. The receiver circuitry is further configured to receive a response comprising a device identity of the UE and one of an uplink (UL) grant or a RA reject message.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for monitoring channel quality of a radio link between a secondary evolved NodeB (SeNB) and a user equipment (UE) in a wireless communication network configured for dual connectivity. In embodiments, the UE may generate one or more indications of a channel quality of the SeNB-UE radio link and forward the indication to the SeNB. Based on the indication, the UE may receive a radio resource control (RRC) message from a master eNB (MeNB) related to the SeNB-UE radio link. Other embodiments may be claimed.
Abstract:
An embodiment of methods and user equipment are disclosed. Once such method includes a user equipment transmitting preferences for Flow-to-RAT mapping to a base station of a network. The user equipment may receive a Flow-to-RAT mapping from the base station that specifies a particular RAT to be associated with a particular Flow.
Abstract:
Disclosed herein are methods, apparatuses, and systems for establishing lightweight communications between different network components. A messaging process is utilized which includes a random access procedure for a user equipment (UE) and an eNodeB, and a messaging sequence comprising a reduced number of messages (compared to a legacy Radio Resource Control (RRC) Connection messaging sequence) exchanged between different nodes of the network to establish a lightweight connection. These messages can be generated using any combination of pre-configured or pre-determined data specific to either the UE or to lightweight communications.
Abstract:
An unlicensed spectrum usage monitoring and reporting method is disclosed. The unlicensed spectrum usage monitoring and reporting method employs a new logical entity in a Long Term Evolution (LTE) enhanced Node B (eNB) as well as a dedicated interface between the eNB and the Policy and Charging Enforcement Function (PCEF). The method employs a diameter-based protocol for communication between the eNB and the PCEF, and defines several new Attribute-Pair Values (AVPs) and message commands to enable exchange of unlicensed spectrum usage information for User Equipment (UE) operating in the LTE network.
Abstract:
Methods and apparatus for communicating in a wireless network include mechanisms to facilitate concurrent use of periodic scheduling requests and a random access procedure for a UE to request uplink resources from an eNB.
Abstract:
A 3GPP LTE protocol enhancement realizes the full benefit of proposed dynamic frequency sharing systems by enhancing current bearer establishment and update provisioning for adaptive Quality of Service (QoS) levels to support Licensed Shared Access (LSA). A User Equipment (UE) comprises a transceiver configured to define an adaptation context, define a default and one or more additional acceptable QoS levels associated with the adaptation context, communicate a request to create or update an adaptive bearer specifying the defined adaptation context and additional acceptable QoS levels, and receive or update spectrum resources for the adaptive bearer. The adaptive bearer may be provisioned according to the communicated request.
Abstract:
Embodiments of an Evolved Node-B (eNB), User Equipment (UE), and methods for paging are disclosed herein. The eNB may transmit a paging message that may include paging identifiers to indicate an intention of the eNB to send downlink data to the first group of UEs. The paging message may further include a bitmap of paging indicators to indicate whether the eNB intends to send downlink data to a second group of UEs. The paging message may include the bitmap when a length of the bitmap is less than a combined length of paging identifiers for a paging portion of second group of UEs to which the eNB intends to send downlink data.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and a plurality of evolved Node Bs (“eNBs”). A UE may be adapted to operate in a dual connectivity mode on respective wireless cells provided by first and second eNBs. The UE may communicate with a first eNB in a first frequency band. The UE may communicate with a second eNB in a second frequency band. The first eNB may detect that the second frequency band is unavailable. Based on this detection, the first eNB may notify the UE that communication in the second frequency band is no longer available. In response, the UE may control a radio to cease communication in the second frequency band. Other embodiments may be described and/or claimed.