Abstract:
A WLAN access point ( 111 ) is synchronized with a Wide Area Network (WAN) ( 105 ) via either a backhaul connection ( 115 ), or via hardware of the WLAN access point ( 111 ) suitable for receiving and decoding a synchronization timing signal from the WAN ( 105 ). The WLAN access point ( 111 ) may then transmit a beacon signal during a defined time window. The mobile station ( 101 ) is aware of the time window and only powers its WLAN transceiver equipment on during the appropriate window. Because the WLAN access point ( 111 ) is synchronized to the WAN ( 105 ), the mobile station ( 101 ) is able to anticipate the appropriate time window for power up. When the mobile station detects the WLAN access point ( 111 ) beacon, it notifies the WAN ( 105 ), via a WAN base transceiver station (BTS) ( 107 ) and proceeds to hand over idle mode signaling from the serving BTS ( 107 ) to the WLAN access point ( 111 )
Abstract:
A method and system for facilitating a handoff of a remote mobile unit in a communication system (12) having a plurality of base stations (16 and 22), employs base stations (16 and 22) along a coverage area seam (10) that have a soft handoff subsystem (24) collocated with conventional base station circuitry (44) to facilitate soft handoff. The soft handoff subsystem (24) includes a transceiver (36) for generating and receiving a first group of dedicated soft handoff channels that are an orthogonally related subset of a separate second group of spread spectrum coded traffic channels wherein the soft handoff subsystem is under control of the source base station controller (14). The dedicated soft handoff channels are assigned to a specified source base station (16). Preferably the soft handoff subsystem (24) generates only the first group of dedicated soft handoff channels without pilot channels or synchronization channels.
Abstract:
A code division multiple access (CDMA) communication system reduces system self-interference and enhances system capacity by making rate selection decisions for individual speech encoders in concert with other speech encoders. The system utilizes perceptually weighted error metrics (401) as input into a rate controller (404) which determines and provides selected rates (402) back to the encoders (105). The system provides optimum voice quality and system capacity in that it allows specific encoders to decrease their rate, which improves capacity, as necessary while allowing other encoders to maintain their rates. This prevents needless degradation in voice quality at those times when system capacity needs to be temporarily increased.
Abstract:
A communication unit (200) for use in a communication system is provided which includes a hopping mechanism (114, 144) which hops communication frames over a plurality of carrier frequencies according to a predetermined hopping pattern. At least one of the communication frames preferably includes a synchronization channel time slot having data bits from which the predetermined hopping pattern may be derived. In addition, a communication unit (100) is provided which includes a signal acquisition mechanism (142) for initially acquiring a predetermined hopping pattern that specifies the sequence over which hop frames are hopped over a plurality of carrier frequencies. Also, this communication unit (100) includes a hopping mechanism (134, 144) for hopping receiving frequency according to the predetermined hopping pattern such that a control channel may be detected. In an alternative embodiment, either communication unit may derive the predetermined hopping pattern from detected global position satellite information (149).
Abstract:
A base-site (304) combines baseband frequency hopping and fast-synthesizer hopping to produce an economical frequency hopping communication system (300). The base-site (304) combines the fast-synthesizer frequency hopping capability of transmitters (307-309) with baseband frequency hopping to produce a frequency hopping communication system (300) which serves the same number of subscribers served by transmitters (208-213) in a purely baseband hopping communication system (200), but with fewer transmitters (307-309). The implementation of frequency-selective cavities (312-317) having very low loss eliminates the need for wideband hybrid combiners (112-114), which in turn eliminates transmitted-signal power loss experienced in a purely fast-synthesizer frequency hopping communication system (100).
Abstract:
A code division multiple access (CDMA) communication system reduces system self-interference and enhances system capacity by making rate selection decisions for individual speech encoders in concert with other speech encoders. The system utilizes perceptually weighted error metrics (401) as input into a rate controller (404) which determines and provides selected rates (402) back to the encoders (105). The system provides optimum voice quality and system capacity in that it allows specific encoders to decrease their rate, which improves capacity, as necessary while allowing other encoders to maintain their rates. This prevents needless degradation in voice quality at those times when system capacity needs to be temporarily increased.
Abstract:
Audio degradation is minimized in scenarios where tandem coding occurs. One such scenario is in the environment of voice mail service. Characteristics of an audio information signal are determined, and the signal is classified (303) as to whether further coding (306) should be performed and, if so, which rate/type of coding should be performed. Characteristics of the audio signal which are determined are, inter alia, quality characteristics, rate of previous coding, type of previous coding and the source of previous coding of the audio information signal. The source of previous coding determined may further include, inter alia, an analog network, a digital network, a PSTN or a wireless communication system. Based on this information, the voice mail service will either choose not to further code the audio information signal or code the audio information signal with the best coding algorithm available.
Abstract:
A communication unit (200) for use in a communication system is provided which includes a hopping mechanism (114, 144) which hops communication frames over a plurality of carrier frequencies according to a predetermined hopping pattern. At least one of the communication frames preferably includes a synchronization channel time slot having data bits from which the predetermined hopping pattern may be derived. In addition, a communication unit (100) is provided which includes a signal acquisition mechanism (142) for initially acquiring a predetermined hopping pattern that specifies the sequence over which hop frames are hopped over a plurality of carrier frequencies. Also, this communication unit (100) includes a hopping mechanism (134, 144) for hopping receiving frequency according to the predetermined hopping pattern such that a control channel may be detected. In an alternative embodiment, either communication unit may derive the predetermined hopping pattern from detected global position satellite information (149).
Abstract:
On décrit un système d'égalisation servant à égaliser un signal altéré. Le système d'égalisation comprend un filtre adapté complexe (400) et un estimateur de séquence de probabilité maximale (ESPM) (405) servant à annuler les effets de décalage de phase, de variations d'amplitude, de brouillage intersymboles, etc. produits par les trajets multiples et les bruits provenant de la tête radiofréquence. Le système évalue un signal de corrélation C(t) (505) et le synchronise afin d'augmenter au maximum son énergie telle qu'elle se présente sur les prélèvements du filtre adapté complexe (400). Des prélèvements dont les coefficients d'amplitude se situent au-dessous d'un seuil prédéterminé sont ramenés à zéro afin de produire une estimation de réponse impulsionnelle de canal (RIC) modifiée. L'estimation de RIC modifiée, dont les effets de bruits ont été virtuellement éliminés, est alors utilisée pour construire le filtre adapté complexe (400) ainsi que comme entrée dans l'ESPM (405) afin de produire un signal de données mieux égalisé.
Abstract:
Le système de commande à distance ayant des circuits de signalisation symétriques pour des radiocommunications est couplé à une ligne à un fil/un canal audio (26) et permet le couplage de deux ou plusieurs unités, des stations de base (12) et/ou des consoles à distance (14) à une ligne à un seul fil. Chaque circuit de signalisation comprend un dispositif de couplage de ligne par fil (48) pour effectuer le couplage sur la ligne à fil (26), une ligne d'entrée audio (46) et une ligne de sortie audio (44). Un circuit de commande de gain automatique (56) est couplé entre le dispositif de couplage par fil (48) et la ligne de sortie audio (44) et un filtre (104) et un circuit d'attaque de ligne (106) sont couplés entre la ligne d'entrée audio (46) et le dispositif de couplage par fil (48). Une unité de commande (70) comprenant un microprocesseur (71), un dispositif de codage de tonalité (214), un dispositif de décodage de tonalité (210), une minuterie, une horloge, et une mémoire (212) est couplée par des lignes de sortie au circuit de commande de gain automatique (56) pour commander ses modes de fonctionnement qui comprennent un mode d'extinction lent, un mode d'extinction rapide, un mode d'adaptation et un mode de gain de maintien. La sortie provenant du circuit de commande de gain (56) est également acheminée au travers d'un filtre à bande passante (64) et un limiteur (67) vers l'unité de commande (70). En outre, le dispositif de codage de tonalité (214) de l'unité de commande (70) est couplé à un circuit de sommation (102) situé entre le filtre (104) et le circuit d'attaque de ligne (106) au travers d'un filtre (97) et du circuit de commande de niveau (100). Le protocole programmé dans le micro-processeur permet à toute unité de commander le canal audio (26) en initiant l'envoi d'un message. Egalement des portes de blocage (60, 80) sont prévues pour invalider une sortie audio ou une entrée audio pendant l'envoi ou la réception d'un message par le canal audio (26).