Abstract:
The invention relates to an optoelectronic component comprising a layered structure having an active zone for producing electromagnetic radiation, wherein the active zone is arranged in a plane, wherein the layered structure has an upper side and four lateral surfaces, wherein a strip-type ridge structure is arranged on the upper side of the layered structure, wherein the ridge structure extends between the first lateral surface and the third lateral surface, wherein the first lateral surface represents an irradiating surface for electromagnetic radiation, wherein a first recess is introduced laterally next to the ridge structure into the upper side of the layered structure, wherein a second recess is introduced into the first recess, and wherein the second recess extends up to the second lateral surface.
Abstract:
The invention relates to a method for producing a laser chip (140) comprising steps for providing a semiconductor wafer (100) having a top side (101) and a bottom side (102), wherein the semiconductor wafer has a plurality of integrated laser diode structures (141), which are arranged one after the other along a defined fracture direction (10), for creating a plurality of recesses (200) on the top side of the semiconductor wafer, which recesses are arranged one after the other along the fracture direction, wherein each recess has a front boundary surface (210) and a rear boundary surface (220) following one another in the fracture direction, wherein the rear boundary surface is tilted by an angle between 95° and 170° in relation to the top side of the semiconductor wafer in the case of at least one recess, and for fracturing the semiconductor wafer in the fracture direction at a fracture plane that is oriented perpendicularly to the top side of the semiconductor wafer and that extends through the recesses.
Abstract:
The invention relates to a laser light source for emitting coherent electromagnetic radiation (10) having a vertical far-field radiation profile (121), having a series of semiconductor layers (1) for generating the coherent electromagnetic radiation comprising an active region (3) on a substrate (2), wherein the coherent electromagnetic radiation is emitted during operation in an emission direction (11) at least from a main emission region (5) of a radiation output surface (4), and the radiation output surface (4) is formed by a side surface of the sequence of semiconductor layers (1), and a filter element (13) that suppresses coherent electromagnetic radiation (12) in the vertical far-field radiation profile (121), wherein said radiation was generated during operation and emitted by an auxiliary emission region (6) of the radiation output surface (4), said auxiliary emission region being vertically offset from and spatially separated from the main emission region (5).
Abstract:
The invention relates to a semiconductor light source having a primary radiation source (1) that, in operation, emits electromagnetic primary radiation (5) in a first wavelength range and having a luminescence conversion module (2) into which primary radiation (5) emitted by the primary radiation source (1) is coupled. The luminescence conversion module (2) comprises a luminescence conversion element (6) that absorbs primary radiation (5) from the first wavelength range by means of a luminescent material and emits electromagnetic secondary radiation (15) in a second wavelength range. The luminescence conversion element (6) is disposed at a distance from the primary radiation source (1) on a cooling body (3). Said luminescence conversion element (6) comprises a reflector surface (7, 71, 72) that reflects back primary radiation (5) traveling into the luminescence conversion element (6) but not absorbed thereby and/or reflects secondary radiation (15) in the direction of a light decoupling surface (601) of the luminescence conversion element (6).
Abstract:
The invention relates to a semiconductor laser (1) comprising a semiconductor layer sequence (2) with an n-type n-region (21), a p-type p-region (23) and an active zone (22) lying between the two for the purpose of generating laser radiation. A p-contact layer (3) that is permeable to the laser radiation and consists of a transparent conductive oxide is located directly on the p-region (23) for the purpose of current input. An electrically-conductive metallic p-contact structure (4) is applied directly to the p-contact layer (3). The p-contact layer (3) is one part of a cover layer, and therefore the laser radiation penetrates as intended into the p-contact layer (3) during operation of the semi-conductor laser (1). Two facets (25) of the semiconductor layer sequence (2) form resonator end surfaces for the laser radiation. Current input into the p-region (23) is inhibited in at least one current protection region (5) directly on at least one of the facets (25). Said current protection region has, in the direction running perpendicularly to the associated facets (25), an extension of at least 0.5 µm and at most 100 µm, and additionally of at least 20% of a resonator length for the laser radiation.
Abstract:
A laser light source especially comprises a semiconductor layer sequence (10) having an active zone (45) and a radiation output surface (12) with a first section (121) and a second section (122), which is different therefrom, and a filter structure (5). When operating, the active zone (45) produces coherent first electromagnetic radiation (51) of a first wavelength range and incoherent second electromagnetic radiation (52) of a second wavelength range. The coherent first electromagnetic radiation (51) is emitted in a direction of emission (90) by the first section (121). The incoherent second electromagnetic radiation (51) is emitted by the first section (121) and the second section (122). The second wavelength range comprises the first wavelength range. The filter structure (5) at least partially attenuates the incoherent second electromagnetic radiation (52) emitted by the active zone along the direction of emission.
Abstract:
The invention relates to a radiation-emitting semiconductor chip (1), which has an active zone (2) for generating radiation having the wavelength lambda and a structured region (3) having structure elements disposed at irregular intervals, said elements comprising a first material having a first refractive index n 1 and surrounded by a medium comprising a second material having a second refractive index n 2 . Furthermore, a method for producing such a semiconductor chip is provided.
Abstract:
Die Erfindung betrifft ein optoelektronisches Bauelement mit einer Schichtstruktur (2) mit einer aktiven Zone (9) zum Erzeugen einer elektromagnetischen Strahlung, wobei die aktive Zone (9) in einer Ebene angeordnet ist, wobei die Schichtstruktur (2) eine Oberseite (7) und vier Seitenflächen (3, 4, 5, 6) aufweist, wobei die erste und die dritte Seitenfläche (1,3) gegenüber liegend angeordnet sind, wobei die zweite und die vierte Seitenfläche (4,5) gegenüber liegend angeordnet sind, wobei eine streifenförmige Ridgestruktur (8) auf der Oberseite (7) der Schichtstruktur (2) angeordnet ist, wobei sich die Ridgestruktur (8) zwischen der ersten Seitenfläche (3) und der dritten Seitenfläche (5) erstreckt, wobei die erste Seitenfläche (3) eine Abstrahlfläche für elektromagnetische Strahlung darstellt, wobei seitlich neben der Ridgestruktur (8) in die Oberseite (7) der Schichtstruktur (2) eine erste Ausnehmung (11) eingebracht ist, wobei sich die erste Ausnehmung (11) über eine gesamte Länge der Laserdiode (1) von der ersten bis zur dritten Seitenfläche (3,5) entlang der zweiten Seitenfläche (4) erstreckt, wobei im Bereich der ersten Ausnehmung (11) die zweite Seitenfläche (4) seitlich zurückgesetzte Wandflächen (50,51) aufweist, wobei eine zweite Ausnehmung (12) seitlich in die erste Ausnehmung (11) und in die zurückgesetzten Wandflächen (50,51) der zweiten Seitenfläche (4) eingebracht ist, wobei die zweite Ausnehmung (12) in die Oberseite (7) der Schichtstruktur (2) eingebracht ist, wobei sich die zweite Ausnehmung (12) entlang der zweiten Seitenfläche (4,50,51) erstreckt, wobei die zweite Ausnehmung (12) beabstandet von der ersten Seitenfläche (3) und beabstandet von der dritten Seitenfläche (5) ausgebildet ist.