Abstract:
A terminal apparatus is disclosed wherein even in a case of applying SU-MIMO and MU-MIMO at the same time, the inter-sequence interference in a plurality of pilot signals used by the same terminal can be suppressed to a low value, while the inter-sequence interference in pilot signal between terminals can be reduced. In this terminal apparatus (200): a pilot information deciding unit (204) decides, based on allocation control information, Walsh sequences of the respective ones of first and second stream groups at least one of which includes a plurality of streams; and a pilot signal generating unit (205) forms a transport signal by using the decided Walsh sequences to spread the streams included in the first and second stream groups. During this, Walsh sequences orthogonal to each other are established in the first and second stream groups, and users are allocated on a stream group-by-stream group basis.
Abstract:
Provided are a radio communication mobile station apparatus, a radio communication base station apparatus and a radio communication method, which make it possible to correctly switch between transmission modes for a PUSCH and a PUCCH while impeding signaling overhead from increasing. A transmission mode setting unit (107) detects an instruction given by a base station, the instruction indicating a multiplexing method for a PUSCH and a PUCCH. A trigger information reporting determination unit (108) performs threshold discrimination where PHR_pucch, which is calculated by PHR_control calculation unit (106), is compared with a threshold value that depends on the multiplexing method indicated by the instruction given by the base station. Specifically, in a TDM transmission mode, trigger information is reported if PHR_pucch > X1[dBm] is satisfied. On the other hand, in an FDM transmission mode, the trigger information is reported if PHR_pucch
Abstract:
In a case where a second reference signal for a second communication system is transmitted in addition to a first reference signal for a first communication system, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS for LTE-A, last half symbols in a time direction of a resource unit RB/Sub-frame defined in a frequency-time domain are used, and the CSI-RS is allocated in a position up to the last two symbols or in the last symbol, or the like, of a particular RB/Sub-frame and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in the last half symbol of RB/Sub-frame on the basis of CSI-RS allocation information, measures channel quality such as CQI, PMI or RI by using this CSI-RS, and transmits and reports feedback information containing channel quality information to a transmission apparatus.
Abstract:
Disclosed is a CCE+ number allocation method which reduces the ACK/NACK (Acknowledgment/Negative Acknowledgment) collision probability in a mixed system containing an LTE (Long Term Evolution) system and an LTE+ (Long Term Evolution Advanced) system. A CCE(Control Channel Element)+ number is defined by selecting a number from CCE numbers of the CCE to contain PDCCH (Physical Downlink Control Channel) allocated in a resource element region constituting CCE+ where PDCCH + is arranged. This can prevent overlapped selection of the CCE number and the CCE + number even when the PDCCH and the PDCCH+ are simultaneously transmitted. Thus, it is possible to reduce the collision probability of ACK/NACK correlated to the CCE number and the CCE+ number.
Abstract:
The purpose of the present invention is to be able to simultaneously generate three or more sets of CSI within a predetermined time interval, without degrading the accuracy of the CSI, to achieve CoMP control for flexible switching of base stations. At predetermined intervals or at timing coincident with reception of trigger information, a generation unit (230) uses a CSI-RS resource to measure a desired signal component and interference component, and generate CSI. A transmission unit (240) transmits control information including the CSI. During a given interval (for example, during four sub-frames) following reception of trigger information, the generation unit (230) does not measure the interference component, instead using the most recent previously measured interference component, to measure the channel quality.
Abstract:
In a transmitting device, each of the plurality of mapping candidates that make up the search space is configured from the same number of control channel elements as an aggregation level value, the control channel elements are obtained by dividing each physical resource block into a predetermined number, and the quantity of resource elements contained in each of the predetermined number of control channel elements in each physical resource block adopts at least two types of values. A search space setting unit (102) sets a search space of which the aggregation level value is 2 or more so that, between a plurality of mapping candidates, variation in the total quantity of resource elements contained in the control channel elements that make up the mapping candidates is as small as possible.
Abstract:
In the present invention, even if different UL-DL configurations are set for a plurality of unit bands, notification timing of error detection results for SCell is not dispersed complicatedly, and the processing relating to the error detection results can be simplified. At the reference notification timing of a response signal with respect to downlink data of a second unit band, if a sub-frame of the second unit band is an uplink communication sub-frame and a sub-frame of a first unit band is a downlink communication sub-frame, a control unit (208) transmits the response signal with respect to the downlink data in a specific uplink communication sub-frame (for example, #2 or #7) set in the first unit band.
Abstract:
The present disclosure provides a communication method, base station and user equipment for configuring a parameter table in a wireless communication system including a base station and a user equipment, the communication method comprising: defining at both the base station and the user equipment a parameter table which includes whole entries of a legacy parameter table and extended entries; and transmitting from the base station to the user equipment a bitmap indication which indicates a sub-table selected from the parameter table, wherein the number of the entries in the sub-table is the same as in the legacy parameter table.