Abstract:
An event data recorder (EDR) is configured to operate in a driving mode and a parking mode. In the driving mode, the EDR is configured to perform high quality video recording using an image-capturing circuit. In the parking mode, the EDR is configured to periodically activate the image-capturing circuit for event detection and start to perform low quality video recording after detecting a specific event.
Abstract:
Disclosed are a distance measuring method and a distance measuring apparatus. During the distance measuring, an image is obtained. If the location of a center of gravity of the image is within a first segment, the calculating unit calculates a distance between the object and the distance measuring apparatus corresponding to the projection point, according to a first mapping relationship and the location of a center of gravity of the image. If the location of a center of gravity of the image is within a second segment, the calculating unit calculates a distance between the object and the distance measuring apparatus corresponding to the projection point according to a second mapping relationship and the location of a center of gravity of the image.
Abstract:
The present invention provides a motion detecting system, which includes a light source module, a plurality of image sensors and a control unit. The light source module illuminates at least one object. The image sensors respectively detect the object under the light emitted by the light source module to generate a plurality of detection results. The control unit is coupled to the image sensors, and generates a control command according to the detection results.
Abstract:
A biometric detection module including a light source module, a detection region and a control module is provided. The light source module is configured to emit green light, red light and IR light in a time division manner to illuminate a skin surface. The detection region is configured to detect penetration light emitted from the light source module for illuminating the skin surface and passing through body tissues to correspondingly generate a green light signal, a red light signal and an IR light signal. The control module is configured to determine a filtering parameter according to the green light signal to accordingly filter the red light signal and the IR light signal, and calculate a biometric characteristic according to at least one of the green light signal, a filtered red light signal and a filtered IR light signal.
Abstract:
An exposure mechanism of an optical touch system, which includes a plurality of image sensors and a plurality of active light sources each irradiating corresponding to the associated image sensor, includes: capturing image frames using the image sensors with a sampling cycle to allow each of the image sensors to capture a bright image, wherein the sampling cycle includes a plurality of working modes and in each of the working modes at least one of the image sensors captures the bright image in a sampling interval; simultaneously capturing a dark image using all the image sensors in a denoising sampling interval; and calculating a differential image between the bright image and the dark image captured by each image sensor.
Abstract:
There is provided a mobile carrier and an auto following system using the mobile carrier. The mobile carrier is capable of capturing at least an image of a guiding light source and automatically following the guiding light source based on the captured image of the guiding light source. The mobile carrier is further disposed with a mobile light source for a remote image sensing device to capture an image of the mobile light source while the mobile carrier cannot capture the image of the guiding light source, so that the mobile carrier can be guided by a control signal provided according to the captured image of the mobile light source.
Abstract:
A displacement detection device includes an image sensor, a light source and a processing unit. The image sensor is configured to successively capture images. The light source provides light with an emission frequency and an emission duration for the image sensor in capturing the images. The processing unit is configured to calculate a displacement according to the images and to adjust both the emission frequency and the emission duration according to the displacement.
Abstract:
There is provided a user interface system including a slave device and a master device. The slave device provides light of two different wavelengths to illuminate a finger surface, receives reflected light from the finger surface to generate a plurality of image frames, calculates and outputs an image data associated with a predetermined number of the image frames. The master device calculates a contact status and a displacement of the finger surface and a physiological characteristic of a user according to the image data.
Abstract:
An optical tracking device includes a light source, an image sensor and a processing unit. The light source emits light at a lighting frequency. The image sensor outputs an operating image when the light source is being turned on and outputs a background image when the light source is being turned off. The processing unit is configured to obtain background information from the background image, calculate a differential image of the operating image and the background image, obtain object information from the differential image and compare the background information and the object information thereby removing background noise.
Abstract:
A method of synchronization adjustment is applied to an optical detecting device, so as to synchronize an exposure timing sequence of an image detector with a light emitting timing sequence of an indicating light source. The method includes acquiring a continued image set, analyzing intensity of each image of the continued image set, and adjusting the exposure timing sequence according to duty cycle of the image detector and intensity ratio of at least two images. An exposure frequency of the image detector is greater than a flickering frequency of the indicating light source.