Abstract:
Device authentication is based on the ability of a human to synchronize the movements of his or her fingers. A pairing procedure for two wireless devices may thus involve a synchronization test that is based on the relative timing of actuations of input devices on each of the wireless devices. In some aspects a synchronization test involves determining whether actuations of user input devices on two different wireless devices occurred within a defined time interval. In some aspects a synchronization test involves comparing time intervals defined by multiple actuations of user input devices on two wireless devices.
Abstract:
A feature is provided that facilitates securely creating and/or replacing cryptographic keys. A first key pair is created comprising first private key and first public key. A second (spare) key pair is created comprising second private key and second public key. The second key pair is associated with the first private key. The second key pair is divided into shares and distributed to at least two shareholders. When the first key pair is to be replace, the second key pair is recreated and authenticated with at least a portion of the distributed shares. A trust level is associated with the second key pair corresponding to a trust level of the first key pair. The first key pair may be invalidated upon authentication of the second key pair. Further configurations provide for the creation of additional spare key pair.
Abstract:
Embodiments describe a system and/or method for multiple party digital signatures. According to a first aspect a method comprises establishing a first validity range for a first key, establishing a first validity range for at least a second key, and determining if the validity range of the first key overlaps the first validity range of the at least a second key. A certificate is signed with the first validity range of the first key and the first validity range of the at least a second key if the validity ranges overlap. According to another embodiment, signage of the certificate is refused if the first validity range of the first key does not overlap with the first validity range of the at least a second key.
Abstract:
In a communication system in which two communication entities seek to have a private or confidential communication session, a trust relationship needs first be established. The trust relationship is based on the determination of a shared secret which in turn is generated from contextual information. The contextual information can be derived from the circumstances surrounding the communication session. For example, the contextual information can include topological information, time-based information, and transactional information. The shared secret may be self-generated or received from a third party. In either event, the shared secret may be used as key material for any cryptographic protocol used between the communication entities.