Abstract:
In response to detecting the entry condition, a determination is made as to when multiple mobile computing devices are present within the vehicle. An occupancy zone is determined for each multiple mobile computing device that is determined as being present within the vehicle. Profile information is determined for each mobile computing device. At least one of an operational or usage facet of the vehicle can be configured at each occupancy zone in which one of the mobile computing devices is determined to be present. The operational or usage facet of the vehicle at a location of each occupancy zone can be based at least in part on the profile information determined from the mobile computing device that is deemed to be present at that occupancy zone.
Abstract:
Embodiment methods and systems include external hardware that can be fitted to a wireless communication device to optimize group communications on the wireless devices. The wireless device may be coupled to an external case configured with a physical button that enables group communication such as push-to-talk and other push-to-experience capabilities. Optimizations for push-to-talk communication may be implemented in a push-to-talk mode in response to detecting connection to the external hardware. Signaling between the external case and the wireless device allows detection of the switch to (or from) push-to-talk mode when a user depresses (or releases) the hard key.
Abstract:
Systems and methods are disclosed for optimizing data transfers. The method may include receiving a request to transfer data between a wireless device and a data transfer target, wherein the requested data transfer is associated with a time sensitivity window (TSW), determining whether an opportunity for a peer-to-peer (P2P) data transfer will arise during the TSW, targeting a transfer time from within the TSW for performing the requested data transfer based on the opportunity determination, and transmitting transfer notification data to the wireless device, wherein the transfer notification data includes the targeted transfer time.
Abstract:
A smart Voice Over LTE (VoLTE) application for allowing a wireless mobile device to select an appropriate access technology for establishing a voice call with a target mobile device, based on the capabilities of the target mobile device. Selection on the client side allows interoperability of a VoLTE wireless mobile device on a circuit switched network without requiring use of a gateway between the circuit switched and VoLTE networks. If the target mobile device is only configured for legacy circuit switched network calls, the wireless mobile device need not begin the call connection on the VoLTE network and instead may establish the call on the circuit switched network from the beginning.
Abstract:
A mobile computing device is operated to control a vehicle. A digital key for accessing a vehicle is stored for accessing the vehicle. Profile information is associated with the digital key for configuring operation and/or use of a vehicle. The profile information may include one or more outside parameters for implementing one or more pre-entry vehicle configurations. When one or more proximity conditions are detected as being satisfied as between the mobile computing device and the vehicle, a communication is sent to the vehicle in order to cause the vehicle to implement one or more pre-entry vehicle configurations. The communication can be based on the digital key and may specify the one or more outside parameters.
Abstract:
Methods, devices, and systems for a mobile device to perform actions associated with applications when confirmed to be within proximity of a physical location relevant to the applications, including identifying a unique identifier of a proximate wireless network access point, determining whether the unique identifier matches a predefined identifier stored on the mobile device and associated with an application, obtaining sensor data via a sensor in response to determining that the unique identifier matches the predefined identifier, processing the obtained sensor data to identify encoded information, determining whether the encoded information within the obtained sensor data is associated with the unique identifier, and performing an action based on the encoded information in response to determining that the encoded information is associated with the unique identifier. In various embodiments, the unique identifier may be a service set identifier (SSID), and the sensor data may be acoustic signals emitted from a speaker.
Abstract:
The disclosure generally relates to enabling communication among one or more Internet of Things (IoT) device groups. In particular, various heterogeneous IoT devices that may need to interact with one another in different ways may be organized into IoT device groups to support efficient interaction among the IoT devices. For example, pre-defined IoT device groups may be formed organize certain IoT devices that perform similar activities and certain IoT devices may be dynamically allocated to ad-hoc IoT device groups for certain contexts (e.g., the ad-hoc IoT device groups may include IoT devices that can implement a desired function and therefore be dynamically formed to implement the desired function). Furthermore, the IoT groups may communicate hierarchically, wherein messages may be exchanged among IoT group owners or ranking members to support efficient communication between different IoT groups.
Abstract:
The disclosure is related to determining an association among Internet of Things (IoT) devices. A first IoT device receives an identifier of a second IoT device, obtains a schema of the second IoT device based on the identifier of the second IoT device, and determines whether or not there is an association between the first IoT device and the second IoT device based on a schema of the first IoT device and the schema of the second IoT device, where the schema of the first IoT device comprises schema elements and corresponding values of the first IoT device and the schema of the second IoT device comprises schema elements and corresponding values of the second IoT device.