Abstract:
Systems and methodologies are described that facilitate providing opportunistic relay node communication based on scheduling of other communications in a wireless network. In particular, a relay node can maintain a backhaul link with an access point and an access link with a mobile device to facilitate communicating information therebetween. Time slots during which the backhaul link is active can be determined and avoided during scheduling access link communications with the mobile device. Furthermore, resource assignments from the access point to the mobile device can be monitored and decoded such that time slots associated therewith can also be determined and avoided. Thus, the relay node can communicate with mobile devices in time slots where the backhaul link is inactive and/or the mobile devices are not occupied communicating directly with the access point.
Abstract:
Techniques for scheduling UEs are described. In one design, a scheduler (e.g., for a cell) may receive channel direction information (CDI) and channel strength information (CSI) from a plurality of UEs. In one design, the CDI from each UE may include at least one eigenvector, and the CSI from each UE may include at least one singular value corresponding to the at least one eigenvector. The scheduler may schedule at least one UE among the plurality of UEs for data transmission based on the CDI and CSI from the plurality of UEs. The scheduler may select the at least one UE based on a metric related to signal-to-leakage ratio (SLR), or spectral efficiency, etc. In one design, the scheduler may evaluate the performance of different sets of UEs to determine whether to schedule one UE for single-user MIMO or multiple UEs for multi-user MIMO.
Abstract:
Providing for dynamic resource provisioning in wireless communication is described herein. By way of example, various wireless performance metrics are collected by respective network access points as an aggregate measure of wireless network performance. Aggregated data can be utilized to generate a performance model for the network and for individual access points. Changes to the data are updated to the model to provide a steady-state characterization of network performance. Wireless resources are generated for respective access points in a manner that optimizes wireless performance. Additionally, resource assignments can be updated at various intervals to re-optimize for existing wireless conditions, whether event driven or based on performance metrics. Accordingly, a robust and dynamic optimization is provided for wireless network resource provisioning that can accommodate heterogeneous access point networks in a changing topology.
Abstract:
Techniques for selecting and processing signals from different stations in a wireless network are described. A destination station may receive a direct signal from a source station and at least one relay signal from at least one relay station. The destination station may determine metrics for the source and relay stations, e.g., based on pilots received from these stations. The destination station may select at least one signal to process from among the direct and relay signals based on the metrics for the source and relay stations. The destination station may select the direct signal if the metric for the source station exceeds a threshold. The destination station may select the relay signal from each relay station having a metric exceeding at least one threshold. The destination station may process the at least one selected signal to recover a transmission sent by the source station to the destination station.
Abstract:
Systems and methods are described that facilitate the determination and request of resources a node may wish to reserve. The resources include a plurality of carriers that are shared with other nodes. In an approach, the node determines a condition related to the plurality of carriers; creates an ordering of the plurality of resources; and transmits a resource utilization message (RUM) for one or more of the plurality of resources based on the ordering and the condition.
Abstract:
Systems and methods are described that facilitate evaluating conditions of nodes (e.g., access points, access terminals, etc.) in a wireless communication environment having a plurality of carriers to determine a level of disadvantage for a given node relative to other nodes. The node may transmit a resource utilization message (RUM) that represents the level of disadvantage for the node and request other interference nodes to back off on one or more carriers. This would allow frequency reuse if nodes vary the power of transmission for particular carriers, in conjunction with neighboring nodes.
Abstract:
In a system where multiple resources are available for carrying traffic, a scheduler may give higher scheduling priority to those resources for which a RUM has been sent. For example, if a node has sent a RUM to reserve a specified carrier of a set of allocated carriers, the scheduler may first attempt to schedule traffic on the specified carrier since there may be less interference on this carrier as a result of the RUM.
Abstract:
A mobile communications device is described that includes a processor configured to establish a network connection with a server in a network and a data generator under the control of the processor that is configured to periodically generate a data unit at a rate having a fixed period. The mobile communications device also includes a transceiver configured to transmit, via the network connection, the data unit during one of plurality of slots, each slot being an adjacent fractional portion of the fixed period.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.