Abstract:
Depending on channel conditions, a variable abort timer can be set in relation to wireless communication of data packets. Additionally, available buffer size can be evaluated and used to set a length of the variable abort timer. When a packet sequence is sent, packets can become lost in communication. When a lost packet is recognized, the timer can be initiated and a request for re-transmission of the lost packet can is sent. If the lost packet does not arrive during running of the variable abort timer, then the packet sequence can be processed without the missing packet.
Abstract:
Methods and apparatus for formatting headers for data packets within a communication frame for use in a wireless communication system are presented. Formatting headers includes determining the size of a wireless communication frame, and formatting the payloads and associated headers within the communication frame according to the determined size. This formatting includes placing headers at the beginning of the frame before the data packets corresponding to the headers to optimize processing of the headers at a receiver. Formatting may also include formatting the headers according to a first format within the frame when the determined frame size is below a predetermined size to optimize the size of the headers, and formatting according to a second format within the frame when the size of the data packet is equal to or greater than the predetermined size to optimize processing for frames having large data packets.
Abstract:
Signaling-only access may be established with an access node (104) under certain circumstances such as, for example, upon determining that a node (102) is not authorized for data access at the access node (102). A node (104) that is not authorized for data access at an access node (104) may still be paged by the access node (104) through the use of signaling-only access. In this way, transmissions by the access node (104) may not interfere with the reception of pages at the node (302). A first node may be selected for providing paging (102) while a second node (106) is selected for access (304) under certain circumstances such as, for example, upon determining that the second node provides more desirable service than the first node.
Abstract:
Systems and methodologies are described that facilitate utilizing restriction codes in rejecting connection requests with restricted association access points to indicate a reason for the rejection. Mobile devices can maintain a list of accessible access points and/or groups of access points, which can be consulted during cell reselection to ensure unsuitable restricted association access points are not utilized in cell reselection. Based on receiving a rejection code from a restricted association access point, a mobile device can remove the access point, or a related group, from its maintained list so that subsequent reselection attempts avoid the access point and/or access points in the related group.
Abstract:
Systems and methodologies are described that facilitate grouping pilot identifies to indicate type and/or classification information regarding one or more access points. The access points can select or be assigned pilot identifiers from the group indicating a type or classification related to the access points. Thus, identifiers can be grouped into macrocell and/or femtocell groups or ranges such that an access point can indicate, and mobile devices can efficiently determine, whether the access point provides macrocell or femtocell coverage based on a range from which its pilot identifier is selected or assigned. In addition, the pilot identifiers can be utilized to indicate restricted association information regarding the access points.
Abstract:
Method and apparatus for secure transmissions. Each user is provided a registration key. A long-time updated broadcast key is encrypted using the registration key and provided periodically to a user. A short-time updated key is encrypted using the broadcast key and provided periodically to a user. Broadcasts are then encrypted using the short-time key, wherein the user decrypts the broadcast message using the short-time key. One embodiment provides link layer content encryption. Another embodiment provides end-to-end encryption.
Abstract:
A communication node determines that radio link failure occurred during connected state mobility of an access terminal and reports the radio link failure to another communication node. For example, a target access point may determine that radio link failure occurred during handover of an access terminal and send a radio link failure report message to the access point that was previously serving the access terminal or to some other node (e.g., a network node). In the first case, the serving access point may adjust mobility parameters based on this radio link failure information and, optionally, other reported radio link failure information. In the second case, the other node may send a radio link failure report message to the serving access point, or the other node may adjust mobility parameters based on this radio link failure information (and, optionally, other reported radio link failure information) and send the adjusted mobility parameters to the serving access point.