Abstract:
A radio frequency signal transmission circuit includes a direct current blocking unit, a biasing impedance circuit, and a radio frequency element. The direct current blocking unit has a first terminal for receiving an input signal, and a second terminal coupled to a first bias voltage terminal. The biasing impedance circuit has a first terminal coupled to the first bias voltage terminal for providing a first bias voltage, and a second terminal coupled to a second bias voltage terminal for receiving a second bias voltage. The radio frequency element is coupled to the first bias voltage terminal, and receives and processes the input signal. When the biasing impedance circuit operates in a first mode, the biasing impedance circuit provides a first impedance. When the biasing impedance circuit operates in a second mode, the biasing impedance circuit provides a second impedance greater than the first impedance.
Abstract:
A voltage generator includes an oscillator, a charge pump, a smoothing capacitor, and a driving controller. The oscillator has an output. The charge pump has an input and an output, and the input of the charge pump is coupled to the output of the oscillator. The smoothing capacitor is coupled to the output of the charge pump. The driving controller is coupled to the oscillator, and generates an enable signal to adjust an operation frequency of the oscillator. The voltage generator supplies a driving voltage to a switch for driving the switch via the smoothing capacitor. The driving controller generates the enable signal according to the driving voltage.
Abstract:
An amplifier device includes an amplifying unit, a bias module and an impedance unit. A first end of the amplifying unit electronically connects to a voltage source. A second end of the amplifying unit receives an input signal. The first end of the amplifying unit outputs an output signal amplified by the amplifying unit. A third end of the amplifying unit connects to a first reference potential. The bias module electrically connects to the second end of the amplifying unit for providing a bias voltage to the amplifying unit. An impedance unit is electrically connects to the bias module. An impedance value of the impedance unit is variable. The bias module adjusts the amplifier's linearity according to a frequency value of the input signal, a voltage value of the voltage source or a temperature value of the amplifier device. The impedance is adjusted according to the above-mentioned values.
Abstract:
A voltage generator including an oscillator having an output, a charge pump having an input and an output, the input of the charge pump being coupled to the output of the oscillator, a smoothing capacitor, a resistor having an input end and an output end, wherein the input end is coupled to the charge pump and the output end is coupled to the smoothing capacitor, and a shorting element connected in parallel with the resistor and which, when turned on, causes the resistor to be at least partially bypassed, wherein the voltage generator is configured to supply voltage to a radio frequency (RF) switch via the smoothing capacitor, and a frequency of the oscillator is controlled to be faster during a switching period of the RF switch.
Abstract:
A bias circuit includes a first transistor, a second transistor, a first resistor and a second resistor. The first end of the first transistor is coupled to a first voltage source. One end of the first resistor is coupled to the second end of the first transistor, and the other end of the first resistor is coupled to the control terminal of the first transistor. The first end of the second transistor is coupled to a second voltage source, and the second end of the second transistor is coupled to the control terminal of the first transistor. One end of the second resistor is coupled to the other end of the first resistor, and the other end of the second resistor is coupled to the control terminal of the second transistor.
Abstract:
A predistorter has a first capacitor and an impedance conversion circuit. A first end of the first capacitor is coupled to a first node of the amplifier. The impedance conversion circuit is used to perform an impedance conversion to provide a variable capacitance. The impedance conversion circuit has a first bias input circuit and a bipolar junction transistor (BJT). The first bias input circuit is used to receive a first input bias. A base of the BJT is coupled to an output end of the first bias input circuit and a second end of the first capacitor, a collector of the BJT is floating, and an emitter of the BJT is coupled to a second node of the amplifier.
Abstract:
An amplifier includes an input terminal for receiving an input signal, an output terminal for outputting an output signal, a first transistor, a second transistor having a first terminal coupled to a second terminal of the first transistor, a third transistor having a first terminal coupled to a second terminal of the second transistor, a capacitor coupled between a control terminal and a second terminal of the third transistor, a bias circuit coupled to the first terminal of the third transistor for providing a bias voltage to the third transistor, a fourth transistor having a first terminal coupled to the input terminal and a second terminal coupled to the output terminal for providing a bypass path, and a fifth transistor having a first terminal coupled to the first terminal of the first transistor and a second terminal coupled to the output terminal.
Abstract:
A switch device includes a common terminal and a selection circuit. The selection circuit includes a primary switch, a first secondary switch, and a second secondary switch. The primary switch includes a plurality of primary transistors coupled in series and is coupled to the common terminal. The first secondary switch is coupled to the primary switch and a first transmission terminal. The first secondary switch includes a plurality of first secondary transistors coupled in series. The second secondary switch is coupled to the primary switch and a second transmission terminal. The second secondary switch includes a plurality of second secondary transistors coupled in series. The number of the first secondary transistors and the number of the second secondary transistors are both greater than or equal to the number of the primary transistors.
Abstract:
An antenna system includes an antenna and N integrated passive components (IPCs). A first end of each IPC of the N IPCs is directly coupled to the antenna for receiving signals of a band corresponding to the IPC and filtering signals of bands corresponding to other IPCs of the N IPCs. The antenna system can prevent signals of various bands from interfering with each other, reduces parasitic effect, and further improves nonlinear distortion.
Abstract:
A transformer has a first winding, a second winding and a third winding. The first winding is configured to receive a first signal. The second winding is magnetically coupled to the first winding and configured to generate a second signal through electromagnetic induction with the first winding, or by receiving a second input signal. The third winding is magnetically coupled to the second winding, magnetically isolated from the first winding, and configured to generate a third signal through electromagnetic induction with the second winding. The second winding is posited between the first winding and the third winding. The first winding is posited adjacent to the second winding, and the second winding is posited adjacent to the third winding.