Abstract:
A high-electron mobility transistor includes a substrate; a buffer layer over the substrate; a GaN channel layer over the buffer layer; a AlGaN layer over the GaN channel layer; a gate recess in the AlGaN layer; a source region and a drain region on opposite sides of the gate recess; a GaN source layer and a GaN drain layer grown on the AlGaN layer within the source region and the drain region, respectively; and a p-GaN gate layer in and on the gate recess.
Abstract:
A high-electron mobility transistor includes a substrate; a buffer layer on the substrate; a AlGaN layer on the buffer layer; a passivation layer on the AlGaN layer; a source region and a drain region on the AlGaN layer; a source layer and a drain layer on the AlGaN layer within the source region and the drain region, respectively; a gate on the AlGaN layer between the source region and a drain region; and a field plate on the gate and the passivation layer. The field plate includes an extension portion that laterally extends to an area between the gate and the drain region. The extension portion has a wave-shaped bottom surface.
Abstract:
According to an embodiment of the present invention, a method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a first barrier layer on the buffer layer; forming a second barrier layer on the first barrier layer; forming a first hard mask on the second barrier layer; removing the first hard mask and the second barrier layer to form a recess; and forming a p-type semiconductor layer in the recess.
Abstract:
A method of forming an insulating structure of a high electron mobility transistor (HEMT) is provided, the method including: forming a gallium nitride layer, forming an aluminum gallium nitride layer on the gallium nitride layer, performing an ion doping step to dope a plurality of ions in the gallium nitride layer and the aluminum gallium nitride layer, forming an insulating doped region in the gallium nitride layer and the aluminum gallium nitride layer, forming two grooves on both sides of the insulating doped region, and filling an insulating layer in the two grooves and forming two sidewall insulating structures respectively positioned at two sides of the insulating doped region.
Abstract:
A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a barrier layer on the buffer layer; forming a hard mask on the barrier layer; performing an implantation process through the hard mask to form a doped region in the barrier layer and the buffer layer; removing the hard mask and the barrier layer to form a first trench; forming a gate dielectric layer on the hard mask and into the first trench; forming a gate electrode on the gate dielectric layer; and forming a source electrode and a drain electrode adjacent to two sides of the gate electrode.
Abstract:
An insulating structure of a high electron mobility transistor (HEMT) is provided, which comprises a gallium nitride layer, an aluminum gallium nitride layer disposed on the gallium nitride layer, an insulating doped region disposed in the gallium nitride layer and the aluminum gallium nitride layer, and two sidewall insulating structures disposed at two sides of the insulating doped region respectively.
Abstract:
A layout structure of an electronic element including an electronic matrix, a first load and a second load is disclosed. The first load couples to a first end of the electronic matrix and includes a first testing pad and a second testing pad coupling to the first testing pad. The second load couples to a second end of the electronic matrix and includes a third testing pad and a fourth testing pad coupling to the third testing pad.