Abstract:
An apparatus and related methods for facilitating surface-enhanced Raman spectroscopy (SERS) is described. A SERS-active structure near which a plurality of analyte molecules is disposed is periodically deformed at an actuation frequency. A synchronous measuring device synchronized with the actuation frequency receives Raman radiation scattered from the analyte molecules and generates therefrom at least one Raman signal measurement.
Abstract:
Raman spectroscopy systems include an analyte, a radiation source configured to emit incident radiation having a wavelength, and a detector that is capable of detecting only radiation having wavelengths within a detectable range that includes at least one wavelength corresponding to hyper Raman scattered radiation scattered by the analyte. The wavelength of the incident radiation is outside the detectable range. In particular systems, all wavelengths of radiation that are scattered in the direction of the detector impinge on the detector. Raman spectroscopy methods include providing an analyte and irradiating the analyte with incident radiation having a wavelength, providing a detector capable of detecting only wavelengths of radiation within a detectable range that does not include the wavelength of the incident radiation, and detecting Raman scattered radiation scattered by the analyte. A continuous path free of radiation filters may be provided between the analyte and the detector.
Abstract:
Raman systems include a radiation source, a radiation detector, and a Raman device or signal-enhancing structure. Raman devices include a tunable resonant cavity and a Raman signal-enhancing structure coupled to the cavity. The cavity includes a first reflective member, a second reflective member, and an electro-optic material disposed between the reflective members. The electro-optic material exhibits a refractive index that varies in response to an applied electrical field. Raman signal-enhancing structures include a substantially planar layer of Raman signal-enhancing material having a major surface, a support structure extending from the major surface, and a substantially planar member comprising a Raman signal-enhancing material disposed on an end of the support structure opposite the layer of Raman signal-enhancing material. The support structure separates at least a portion of the planar member from the layer of Raman signal-enhancing material by a selected distance of less than about fifty nanometers.
Abstract:
A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.
Abstract:
A molecular analysis device comprises a molecule sensor and a nanopore that passes through, partially through, or substantially near the molecule sensor. The molecule sensor may comprise a single electron transistor including a first terminal, a second terminal, and a nanogap or at least one quantum dot positioned between the first terminal and the second terminal. The molecular sensor may also comprise a nanowire that operably couples a first and a second terminal. A nitrogenous material that may be disposed on at least part of the molecule sensor is configured for a chemical interaction with an identifiable configuration of a molecule. The molecule sensor develops an electronic effect responsive to a molecule or responsive to a chemical interaction.
Abstract:
Devices and methods for detecting the constituent parts of biological polymers are disclosed. A molecular analysis device comprises a molecule sensor and a molecule guide. The molecule sensor comprises a nanowire operably coupling a first terminal and a second terminal and a nitrogenous material disposed on the nanowire. The nitrogenous material is configured to interact with an identifiable configuration of a molecule such that the molecule sensor develops a conductance change responsive to the interaction. The molecule guide is configured for guiding at least a portion of the molecule near the molecule sensor to enable the interaction.
Abstract:
Molecule sensing apparatus. The apparatus has first and second chambers, an input port extending into the first chamber, a fluid channel extending from the first chamber to the second chamber, and a surface-enhanced substrate in the second chamber.
Abstract:
An implantable nanosensor includes a stent to be implanted inside a fluid conduit. The stent has a well in a surface of the stent. The implantable nanosensor further includes a nanoscale-patterned sensing substrate disposed in the well. The nanoscale-patterned sensing substrate is to produce an optical scattering response signal indicative of a presence of an analyte in a fluid carried by the fluid conduit when interrogated by an optical stimulus signal.
Abstract:
An apparatus for use in sensing applications includes a substrate and a plurality of clusters arranged in an aperiodic configuration on the substrate, wherein each of the plurality of clusters is formed of a plurality of Raman-active material nano-particles, and wherein each of the Raman-active material nano-particles is positioned in a substantially ordered configuration with respect to each other in each of the respective plurality of clusters.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a parabolic reflector and a plurality of surface-enhanced Raman spectroscopy (SERS) elements spaced from the parabolic reflector and positioned substantially at a focal point of the parabolic reflector. The parabolic reflector is to reflect Raman scattered light emitted from molecules in a near field generated by the plurality of SERS elements to substantially increase the flux of the Raman scattered light emitted out of the apparatus.