Abstract:
An inductive element formed of planar windings in different conductive levels, the windings being formed in a number of levels smaller by one unit than the number of windings, two of the windings being interdigited in a same level.
Abstract:
A semiconductor device includes a substrate. On at least one face of that substrate, integrated circuits are formed. At least one electromagnetic waveguide is also included, that waveguide including two metal plates that are placed on either side of at least one part of the thickness of the substrate and are located facing each other. Two longitudinal walls are placed facing each other and are formed by metal vias made in holes passing through the substrate in its thickness direction. The metal vias electrically connect the two metal plates.
Abstract:
An array of functional cells includes a subset of cells powered by at least one supply rail. That supply rail is formed of first segments located on a first metallization level and second segments located on a second metallization level with at least one conductor element extending between the first and second segments to electrically connect successive segments of the supply rail.
Abstract:
A housing includes a body with a first silicon element and a second porous silicon element, at least one first cavity provided in the porous silicon element, a first electrically conducting contact area electrically coupled to at least a portion of at least one internal wall of the at least one first cavity, and a second electrically conducting contact area electrically coupled to a different portion of the at least one internal wall of the second porous silicon element of the at least one first cavity, wherein the two contact areas are electrically isolated from each other.
Abstract:
A method and a circuit for detecting a loss in the equiprobable character of a first output bit flow originating from at least one first element of normalization of an initial bit flow, including analyzing the flow rate of the normalization element.
Abstract:
A process for producing a microelectronic device includes producing a first semiconductor substrate which includes a first layer and a second layer present between a first side and a second side of the substrate. First electronic components and an interconnecting part are produced on and above the second side. The substrate is then thinned by a first selective etch applied from the first side and stopping on the first layer followed by a second selective etch stopping on the second layer. A second substrate is attached over the interconnecting part. The electronic components may comprise optoelectronic devices which are illuminated through the second layer.
Abstract:
A method for forming a resonator including a resonant element, the resonant element being at least partly formed of a body at least partly formed of a first conductive material, the body including open cavities, this method including the steps of measuring the resonator frequency; and at least partially filling said cavities.
Abstract:
A method for preparing a multilayer substrate includes the step of deposing an epitaxial γ-Al2O3 Miller index (001) layer on a Si Miller index (001) substrate.
Abstract translation:制备多层衬底的方法包括在Si Miller指数(001)衬底上去除外延γ-Al 2 O 3 Miller指数(001)层的步骤。
Abstract:
A low density parity check decoder for performing LDPC decoding based on a layered algorithm applied to a parity check matrix, the decoder including a channel memory, a metrics memory, first and second operand supply paths each arranged to provide operands based on channel values and metrics values; a processor block including a plurality processing units in parallel and arranged to receive operands from the first supply path and to determine updated metric values, a buffer arranged to store at least one of the operands from the first supply path; and an adder coupled to an output of the processor block and arranged to generate updated channel values by adding the updated metrics values to operands from a selected one of the buffer and the second supply path.
Abstract:
A resonant device including a stack of a first metal layer, a piezoelectric material layer, and a second metal layer formed on a silicon substrate, a cavity being formed in depth in the substrate, the thickness of the silicon above the cavity having at least a first value in a first region located opposite to the center of the stack, having a second value in a second region located under the periphery of the stack and having at least a third value in a third region surrounding the second region, the second value being greater than the first and the third values.