Abstract:
Method for producing nano-to micro-scale particles of a material by homogeneous thermal decomposition or reduction of a reactant gas (12) containing the material, whereby the method comprises the steps of supplying the reactant gas (12) to a reaction chamber (16) of a reactor via at least one inlet, and a) heating the reactant gas (12) to a temperature sufficient for thermal decomposition or reduction of the reactant gas (12) to take place inside the reaction chamber (16), or b) confining a temperature dependent reaction or reaction sequence involving a plurality of reactants inside the reaction chamber (16). The method comprises the step of supplying a primary gas (22) through a porous membrane (20) constituting at least part of at least one wall of the reaction chamber (16) to provide a protective inert gas boundary to minimize or prevent the deposition of the material on the porous membrane (20).
Abstract:
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Acetylen und Synthesegas durch partielle Oxidation von Kohlenwasserstoffen mit Sauerstoff, wobei die Ausgangsgase umfassend einen kohlenwasserstoffhaltigen Strom und einen sauerstoffhaltigen Strom zunächst getrennt vorerhitzt und anschließend in einer Mischzone vermischt werden und nach Durchströmen des Brennerblocks (1) dem Feuerraum (2) zur Reaktion gebracht und anschließend schnell abgekühlt werden, welches dadurch gekennzeichnet ist, dass man die Feuerrauminnenwand mit einem Spülgasstrom (3) belegt, man diesen Spülgasstrom mittels mehrerer Zuleitungen einbringt und man jede dieser Zuleitungen im Innern des Feuerraumes so ausbildet, dass die Orientierung des Richtungsvektors der Hauptströmung des aufgegebenen Spülgasstromes mit der Orientierung des Richtungsvektors der Hauptströmungsrichtung des durch den Brennerblock zugeführten Gasstromes in einem Winkel von maximal 10° abweicht und die Zuleitungen an ihrer Austrittsöffnung eine Spaltbreite von 1/1000 bis 3/100, bevorzugt 1/500 bis 1/100 des Feuerraumdurchmessers aufweisen, wobei in Bezug auf die Hauptströmungsrichtung des durch den Brennerblock zugeführten Gasstromes betrachtet eine mehrstufige Zufuhr des Spülgasstromes an hintereinander liegenden Stellen erfolgt, wobei der freie Querschnitt des Feuerraumes, welcher dem aus dem Brennerblock austretenden Gasstrom zur Durchströmung des Feuerraumes zur Verfügung steht, auf Höhe der Zuleitungen des Spülgasstromes in etwa konstant ist.
Abstract:
Methods and apparatus for introducing a gas into the reaction zone of a reactor. Such methods and apparatus can more evenly distribute the gas throughout the reaction zone. Spargers for introducing a gas into the reaction zone of a reactor can be employed in systems and methods for carrying out the liquid-phase oxidation of an oxidizable compound, such as para-xylene.
Abstract:
Device for distributing a fluid in a controlled manner, in particular for distributing a gas loaded with particles, the device comprising a pipe (1) provided with at least one inlet orifice (2) and with a series of outlet orifices (3) spread along the pipe (1) and cut in the side wall of this pipe, characterized in that at least one section (4) of the wall, located downstream of at least one outlet orifice and limited by a section (5) of the edge of this orifice, has a shape such that this section of the edge of this orifice is positioned inside the pipe so that, when the device is in service, the flow direction of the fluid exiting this orifice and travelling along said wall section is controlled by the shape of the latter section.
Abstract:
An improved reactor for the autorefrigerant alkylation process has a generally cylindrical upright reactor vessel with the inlet for the refrigerant reactant and the sulfuric acid at its lower end and a series of inlets for the olefin reactant at vertically spaced intervals up the length of the reactor. An extended, sinuous flow path for the reactants is provided by means co-acting baffles which define sequential reaction zones in which alkylation takes place. The baffles interact with a rotary mixer with multiple impellers located on the reactor axis which provides agitation to the mixture ascending the reactor additional to that created by the ebullition of the refrigerant. Outlets for the vaporized refrigerant and the reaction effluent are provided at the upper end of the vessel. In the alkylation process operated in the reactor, the liquid isoparaffin hydrocarbon reactant/refrigerant with a sulfuric acid alkylation catalyst is introduced into the lower end of the reactor and passed along the extended reactant flow path with the olefin reactant introduced at intervals along the path. The reaction mixture flows alternately towards and away from the reactor walls in the sequence of serial reaction zones within the reactor to promote mixing of the isoparaffin reactant with the acid catalyst. With the evolution of the heat of reaction, a portion of the reactant refrigerant is vaporized to effect temperature control in the reactor. Agitation is provided by means of the rotary mixer with its mixing impellers in each of the sequential reaction zones. The vaporized reactant refrigerant and alkylation reaction products leave the reactor at its upper end.
Abstract:
Provided is a sparger including: a main body including a plurality of holes, a protruding pipe extending upward along an outer circumferential surface of the plurality of holes, and a side pipe extending from a side surface of the protruding pipe.
Abstract:
According to one or more embodiments, a chemical feed distributor may include a chemical feed inlet and a body. The chemical feed inlet may pass a chemical feed stream into the chemical feed distributor. The body may comprise one or more walls that may define an elongated chemical feed stream flow path and a plurality of chemical feed outlets. The plurality of chemical feed outlets may be spaced on the walls. The plurality of chemical feed outlets may be operable to pass the chemical feed stream out of the chemical feed distributor. The elongated chemical feed stream flow path may comprise an upstream fluid flow path portion and a downstream fluid flow path portion. The walls may be positioned such that the average cross-sectional area of the upstream fluid flow path portion is greater than the average cross-sectional area of the downstream fluid flow path portion.
Abstract:
A reactor system includes a reactor vessel configured to contain a process fluid, and a sparger assembly that operably coupled to the reactor vessel and configured to supply a mixture of a gas and a recirculated process fluid to the reactor vessel. The sparger assembly includes a plurality of sparger chambers. Each sparger chamber includes a process fluid conduit fluidly coupled to a process fluid return of the reactor vessel via a process fluid inlet, wherein the process fluid inlet has a first block and bleed valve assembly. Each sparger chamber includes a sparger conduit fluidly coupled to the process fluid conduit and a sparger disposed within the sparger conduit and fluidly coupled to a gas source via a gas inlet. Each sparger chamber also includes a process fluid-gas mixture outlet that fluidly couples the sparger conduit to a sparger outlet of the reactor vessel.