Abstract:
Method of manufacturing a hygiene paper product in form of a continuous paper web (W)of sheets partly separated by perforation lines (9) and wound to a log of predetermined longitudinal length, providing a continuous paper web (W), moving the continuous paper web in a direction of its longitudinal extension, providing at least one embossed pattern on the continuous paper web, providing in the area of an embossing station at least one mark (6, 7) onto the continuous paper web, which mark (6, 7) is in register to the embossed pattern, sensing the mark and controlling perforating means for registering the perforation lines (9) with the embossed pattern thereby imparting perforation lines to the continuous paper web in predetermined longitudinal distances, winding up the resulting web to logs, and cutting the log into rolls.
Abstract:
Method and apparatus for manufacturing a hygiene paper product includes: providing a continuous paper web, moving the continuous web in the direction of its longitudinal extension, applying a repetitive creative structure relative to the longitudinal extension of the web as a first pattern to the web with a first roll, applying a repetitive functional structure relative to the longitudinal extension of the web as a second pattern to the web with a second roll, while enabling the first pattern to be in register with the second pattern by concurrently controlling the repetitive surface speed of continuous web and the phasing between the first roll and the second roll.
Abstract:
An embossing system for embossing and perforating at least a portion of a web is provided comprising a first embossing roll having embossing elements and at least a second embossing roll having embossing elements, wherein the elements of the first and second embossing rolls define perforate nips for embossing and perforating the web and wherein at least a predominate number of the perforate nips are substantially oriented in the cross-machine direction. Moreover, substantially all of the nips defined by the embossing elements of the first and second embossing rolls can be substantially oriented in the cross-machine direction. Further, the cross-machine embossing elements are at an angle of about 85° to 95° from the machine direction.
Abstract:
The present invention is generally directed to a process for hot embossing a base sheet and/or to a process for perforating and bonding multiple plies of a paper product together. The process can be used in order to apply a decorative pattern to a paper product and/or to bond multiple ply products together. In one embodiment, the process of the present invention includes feeding a previously formed single ply or multi-ply base sheet through a heated embossing nip. As the base sheet passes through the heated embossing nip, sufficient heat and pressure is imparted to cause the fibers within the sheet to begin to melt or glassinate. Upon cooling, inter-fiber bonding occurs resulting in a well-defined embossment as well as bonding between plies of a multi-ply product.
Abstract:
A method of embossing an absorbent web with a machine direction undulatory structure is described. The web has a plurality of ridges extending in its machine direction occurring at a frequency, F, across the web and the method includes providing the web to an embossing station where the web is embossed between a first and second embossing roll, each of which rolls may be provided with a plurality of embossing elements configured to define a plurality of embossing nips. At least a portion of the embossing nips are substantially oriented in a cross-machine direction with respect to the web and have a cross direction length, L. The product FnullL is from about 0.1 to about 5.
Abstract:
The present invention is generally directed to a process for hot embossing a base sheet and/or to a process for perforating and bonding multiple plies of a paper product together. The process can be used in order to apply a decorative pattern to a paper product and/or to bond multiple ply products together. In one embodiment, the process of the present invention includes feeding a previously formed single ply or multi-ply base sheet through a heated embossing nip. As the base sheet passes through the heated embossing nip, sufficient heat and pressure is imparted to cause the fibers within the sheet to begin to melt or glassinate. Upon cooling, inter-fiber bonding occurs resulting in a well-defined embossment as well as bonding between plies of a multi-ply product.
Abstract:
A paper toweling which provides a combination of strength, bulk and absorbency while presenting an attractive appearance. Included are a single ply paper towel having areas of light and heavy embossing perforations which form diamond shaped islands of heavy embossing perforations surrounded by intersecting bands of light bosses.
Abstract:
An embossed paper laminate having two laminae is provided. The laminae are joined such that there is at least one zone of the laminate wherein the peel strength of the laminate in that zone is greater than the peel strength of the laminate in other zones of the laminated paper product. The laminate is made by two close tolerance pattern rolls juxtaposed to form a nip. Each pattern roll has radially extending protuberances which contact the periphery of the other pattern roll intermediate its protuberances. The laminae are fed through the nip in face-to-face relationship and are embossed and adhesively joined to the other lamina by the radially extending protuberances. The laminating adhesive is supplied to the various zones of the laminated paper product at a level that is appropriate for providing the requisite peel strength for that zone.
Abstract:
A mated pair resilient and rigid embossing rolls are disclosed for achieving the advantages of conventional rubber to steel embossing, while avoiding the problems of conventional embossing approaches. In particular, a laser can be utilized to form recesses in a resilient roll such that the resilient roll receives protuberances of a rigid male embossing roll when the rolls are placed in contact. By providing recesses on the resilient roll, the pressure or force required for causing the rubber to flow around the protuberances can be significantly decreased as compared to conventional rubber to steel embossing. As a result, wear on the rolls is reduced, and smaller diameter rolls may be utilized, thereby reducing the cost of the embossing equipment. In addition, since less pressure is required to cause the rubber to flow about the protuberances, roll deflection is not a problem, and an embossed pattern can be imparted having a consistent, high degree of definition across the width of a web.
Abstract:
A tissue product with at least four plies made of tissue paper base sheet or nonwoven comprises:
a first outer ply and a second outer ply and at least two inner plies between the first outer ply and the second outer ply, wherein only one of the inner plies is un-embossed; the outer plies comprise a micro-embossing pattern; at least one of the outer plies comprises a décor embossing pattern; and at least two adjacent inner plies comprise the un-embossed inner ply and one micro-embossed inner ply; wherein the density of the micro-embossed protrusions of the micro-embossed inner ply is different to the density of further embossed protrusions of the micro-embossing pattern of the outer ply which is adjacent to the micro-embossed inner ply.