Abstract:
Known is a method for producing synthetic quartz glass comprising the following method steps: (a) reacting a carbonic silicon compound-containing raw material with oxygen in a reaction zone into SiO 2 particles, (b) precipitating the SiO2 particles on a sedimentation area by forming a porous SiO2 soot body containing hydrogen and hydroxyl groups, (c) drying the porous SiO2 soot body, and (d) glazing to the synthetic quartz glass by heating the soot body up to a glazing temperature. In order to indicate a method proceeding therefrom which facilitates a cost-efficient production of quartz glass by means of pyrolysing or hydrolysing a carbon-containing silicon compound using a carbon-containing raw material, the invention describes the production of a soot body with a carbon content within the range of 1 ppm by weight to 50 ppm by weight.
Abstract:
A method and apparatus are provided for drawing a self-aligned core fiber free of surface contamination and inserting the core fiber into a cladding material to make an optical fiber preform. Single or multi-mode optical fibers having high quality core-clad interfaces can be directly drawn from the preforms described herein.
Abstract:
Cladded halide optical fibres for infrared transmission are made by covering a two-part halide compound billet (15), comprising a core (10), and a sleeve (8), with a polymer layer (12), heating the assembly and drawing it through a die (14). The halide compound forming the sleeve (8) has a lower refractory index than the halide compound forming the billet core (10). A second polymer layer (31) can be provided between the respective halide compounds.
Abstract:
5n7 Disclosed is a method and apparatus for drawing an elongated glass article (32) such as a fiber optic device. The article (32) is drawn upwardly from a source (28) through the surface of a quantity of molten metal (21) having a vertical temperature gradient. The source can be an elongated solid glass preform (28) that is vertically positioned within the molten metal (21) such that the temperature of that portion of the molten metal adjacent the upper end region is sufficiently high to heat that region to drawing temperature. The upper end region (29) is pulled to form a tapered root, continued pulling resulting in the formation of an elongated article (32) from the small diameter root end. The relative position of the root is maintained with respect to the surface of the molten metal during the drawing operation. Alternatively, the glass can be drawn from an orifice located within the molten metal. The apparatus includes container means (11,12) for supporting the molten metal (21), and external or internal means (22,23) for heating and/or cooling portions of the molten metal (21). The container (11,12) can also be provided with baffle means for dividing the container into a plurality of chambers.
Abstract:
The apparatus is composed of two coaxial crucibles (3, 4) the outer one (4) presenting a low-softening temperature, so that it might be drawn with the raw materials. Thus a fibre is obtained with an outer coating which protects it against atmospheric agents. According to this process raw materials are used allowing the fabrication of fibres which may be used to transmit optical radiations with wavelengths longer than 5 µm; with an attenuation minimum lower than 10- 3 dB/km.
Abstract translation:该装置由两个同轴的坩埚(3,4)组成,外部的一个(4)呈现低的软化温度,从而可以用原料拉制。 因此,获得具有保护其抵抗大气剂的外部涂层的纤维。 根据该方法,可以使用原料制造可用于传输波长长于5μm的光辐射的光纤,其衰减最小值降至10 -3 dB / km。
Abstract:
A process is disclosed for producing an infra-red light transmitting optical fiber by drawing a rod of single crystal or polycrystalline metal halide into a fiber through a die; also disclosed is a process for producing an infrared light transmitting optical fiber of step-index type by forming around a single crystal or polycrystalline fiber core, an intimate cladding crystal layer having a lower refractive index than the core by working in the temperature range that does not cause recrystallization of the core or cladding during working.
Abstract:
Disclosed is an optical fiber comprising a silver halide solid solution of the formula AgClxBr1-x, wherein x ranges from 0 to 1.0, and one or more dopants selected from the group consisting of AgI and those of the formula MY, wherein M may be Li, Na, K, Rb, Cs; or MY2, wherein M may be Mg, Ca, Sr, Ba, Cd, Pb or Hg, and Y may be Cl, Br or I.
Abstract:
To overcome problems of fabricating conventional core-clad optical fibre from non-silica based (compound) glass, it is proposed to fabricate non-silica based (compound) glass optical fibre as holey fibre i.e. one contining Longitudinal holes in the cladding. This removes the conventional problems associated with mismatch of the physical properties of the core and clad compound glasses, since a holey fibre can be made of a single glass composition. With a holey fibre, it is not necessary to have different glasses for the core and cladding, since the necessary refractive index modulation between core and cladding is provided by the microstructure of the clad, i.e. its holes, rather than by a difference in materials properties between the clad and core glasses. Specifically, the conventional thermal mismatch problems between core and clad are circumvented. A variety of fibre types can be fabricated from non-silica based (compounds) glasses, for example: single-mode fibre; photonic band gap fibre; highly non-linear fibre; fibre with photosensitivity written gratings and other refractive index profile structures; and rare-earth doped fibres (e.g. Er, Nd, Pr) to provide gain media for fibre amplifiers and lasers.
Abstract:
Die Erfindung betrifft ein Verfahren zum Herstellen eines metallhalogenidhaltigen Ausgangsmaterials für eine optische Faser, wobei das Ausgangsmaterial einen vorbestimmten Brechungsindex aufweist, mit den Schritten: Mischen halogenhaltiger Gase zu einem Gasgemisch mit einem Partialdruckverhältnis, das vom vorbestimmten Brechungsindex des Ausgangsmaterials abhängt, Herbeiführen einer chemischen Reaktion des Gasgemisches mit einem Metall zu mindestens einem Reaktionsprodukt bei einer ersten Temperatur oberhalb der Schmelztemperatur des Reaktionsproduktes und Abkühlen des Reaktionsproduktes auf eine zweite Temperatur unterhalb der Schmelztemperatur.