Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a fuel supply tube arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes through oxygen-injection holes formed in the fuel supply tube and then mixes with fluidized, pulverized, solid fuel passing through the fuel supply tube to create an oxygen-fuel mixture in a downstream portion of the fuel supply tube. This mixture is discharged into the flame chamber and ignited in a flame chamber to produce a flame.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a fuel supply tube arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes through oxygen-injection holes formed in the fuel supply tube and then mixes with fluidized, pulverized, solid fuel passing through the fuel supply tube to create an oxygen-fuel mixture in a downstream portion of the fuel supply tube. This mixture is discharged into the flame chamber and ignited in a flame chamber to produce a flame.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a fuel supply tube arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes through oxygen-injection holes formed in the fuel supply tube and then mixes with fluidized, pulverized, solid fuel passing through the fuel supply tube to create an oxygen-fuel mixture in a downstream portion of the fuel supply tube. This mixture is discharged into the flame chamber and ignited in a flame chamber to produce a flame.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.
Abstract:
Bei einem Verfahren und einer Vorrichtung zum Überwachen der Verbrennung von Brennmaterial in einem Kraftwerk wird eine reale Konzentrationsverteilung eines Stoffes in einem zugehörigen Verbrennungsraum gemessen, die reale Konzentrationsverteilung mit Berücksichtigung der Verbrennungsstöchiometrie ausgewertet und auf die Zusammensetzung des Brennmaterials auf der Grundlage der vorgenommenen Auswertung rückgeschlossen.
Abstract:
A burner unit (10) produces hot gas by burning a particulate biomass fuel and mixing the resulting hot combustion gas with an air flow, using a static mixing unit (16) containing baffles (42-48) to ensure thorough mixing. The combustion unit (10) comprises a first horizontal duct (18) of heat-resistant material above which is a second horizontal duct (20) of heat-resistant material, and these ducts communicate through a gas plenum (24) in which ash can collect. At the other end of the second horizontal duct (20) is the hot combustion gases outlet (34). The baffles (42-48) ensure mixing occurs in a plurality of stages.
Abstract:
A control system, for use with a power plant having a mill for pulverising material for input into a combustion system of the power plant, the control system comprising: a first sensor (12), for recording a first parameter of a first output from the combustion system; a second sensor (14), for recording a second parameter of a second output from the combustion system; an adjuster system (16), for adjusting and recording at least one variable parameter of the combustion system; a state estimator (18) component operable to receive a first signal relating to such first parameter, a second signal relating to such a second parameter and a third signal relating to such at least one variable system parameter, the state estimator component being operable to use the first signal, second signal and third signal to produce a material parameter indicator signal (20) and a system state indicator signal (22); and an output component (24) operable to receive such a material parameter indicator signal and such a system state indicator signal and to combine said material parameter indicator signal and system state indicator signal to produce an output control signal.
Abstract:
A control system, for use with a power plant having a mill for pulverising material for input into a combustion system of the power plant, the control system comprising: a first sensor (12), for recording a first parameter of a first output from the combustion system; a second sensor (14), for recording a second parameter of a second output from the combustion system; an adjuster system (16), for adjusting and recording at least one variable parameter of the combustion system; a state estimator (18) component operable to receives a first signal relating to such first parameter, a second signal relating to such a second parameter and a third signal relating to such at least one variable system parameter, the state estimator component being operable to use the first signal, second signal and third signal to produce a material parameter indicator signal (20) and a system state indicator signal (22); and an output component (24) operable to receive such a material parameter indicator signal and such a system state indicator signal and to combine said material parameter indicator signal and system state indicator signal to produce an output control signal.