Abstract:
Devices to detect a substance and methods of producing such a device are disclosed. An example device to detect a substance includes a housing defining an externally accessible chamber and a seal to enclose at least a portion of the chamber. The example device also includes a substrate includes nanoparticles positioned within the chamber. The nanoparticles to react to the substance when exposed thereto. The example device also includes a non-analytic solution within the chamber to protect the nanoparticles from premature exposure.
Abstract:
PROBLEM TO BE SOLVED: To provide an optical measuring instrument for easily and optically measuring a flat measuring surface even if the amount of a liquid or molten material being a measuring target is little and for measuring the physical properties of the liquid or molten material by causing no transpiration or no reaction with another substance, and an optical measuring method. SOLUTION: The optical measuring instrument includes a base transparent container 6 which houses a measuring target material and keeps at least the base 6a flat and transparent and an optical device which projects light on the base 6a of the container 6 and detects and measures the reflected light 11 from the base. The base of the transparent container 6 housing the liquid or molten material 13 is irradiated with incident light 10 from a light source 1 and the reflected light component from the liquid or molten material 13 in the reflected light 11 is detected and measured. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
An optical analysis device for determining at least one characteristic of a medium in a process environment or a laboratory environment is provided. The optical analysis device includes an optical measuring arrangement with a plurality of components arranged in an interior space of a housing. The housing has at least one entry/exit area for the entry and/or exit of optical radiation, and a mechanical interface for a positionally accurate detachable attachment of the optical analysis device to a location of operation, in particular in a process environment. Advantageously, the mechanical interface spatially overlaps with the optical radiation entry/exit area. This enables fast assembly and disassembly of the optical analysis device in different locations of use.
Abstract:
An automatic photocurrent spectrum measurement system based on a Fourier infrared spectrometer, including a light source component, an environment control component, a measuring module, and a control module. The system is configured to evaluate photoelectric performance semiconductor materials or devices under different temperatures, voltage biases or current biases.
Abstract:
An online detection device underwater elements includes an LIBS system in a sealing pressure chamber and an external airflow control system. The airflow control system has a gas probe bin and a gas source. An opening is formed at one end of the gas probe bin while the other end and the sealing pressure chamber are hermetically partitioned through a glass window. A laser in the LIES system outputs laser to an underwater object surface to be detected for generating plasma spectra. A spectrometer collects plasma spectra returned along an original optical path. When the device operates in water, the balance gas storage tank produces gas with the same pressure as underwater. A flow model is invoked according to the current water pressure to accurately control the air flow rate to form a stable gas environment in the gas probe, which improves the plasma excitation and collection efficiency.
Abstract:
Embodiments of the present disclosure demonstrate cavitating measuring devices. A liquid sample is cavitated to generate bubbles of gas. A frequency-specific radiation is emitted and passes through at least one bubble of gas. The frequency-specific radiation emerges from the bubble of gas as an absorption signal comprising the frequency-specific radiation. The absorption signal is detected and communicated to a system processor. The system processor analyzes the absorption signal data and determines the chemical components present in the liquid sample. Embodiments of the present disclosure describe both static and dynamic liquid samples. The liquid samples can be measured at the sample site.